Suppressing residual low-frequency noise in VSP reverse time migration by combining wavefield decomposition imaging condition with Poynting vector filtering

2020 ◽  
pp. 1-10
Author(s):  
Lele Zhang ◽  
Yang Liu ◽  
Wanli Jia ◽  
Jing Wang
2018 ◽  
Vol 35 (2) ◽  
Author(s):  
Juan Guillermo Paniagua Castrillón ◽  
Olga Lucia Quintero Montoya ◽  
Daniel Sierra-Sosa

ABSTRACT. Reverse time migration (RTM) solves the acoustic or elastic wave equation by means of the extrapolation from source and receiver wavefield in time. A migrated image is obtained by applying a criteria known as imaging condition. The cross-correlation between source and receiver wavefields is the commonly used imaging condition. However, this imaging condition produces spatial low-frequency noise, called artifacts, due to the unwanted correlation of the diving, head and backscattered waves. Several techniques have been proposed to reduce the artifacts occurrence. Derivative operators as Laplacian are the most frequently used. In this work, we propose a technique based on a spiral phase filter ranging from 0 to 2π, and a toroidal amplitude bandpass filter, known as Laguerre-Gauss transform. Through numerical experiments we present the application of this particular filter on three synthetic data sets. In addition, we present a comparative spectral study of images obtained by the zero-lag cross-correlation imaging condition, the Laplacian filtering and the Laguerre-Gauss filtering, showing their frequency features. We also present evidences not only with simulated noisy velocity fields but also by comparison with the model velocity field gradients that this method improves the RTM images by reducing the artifacts and notably enhance the reflective events. Keywords: Laguerre-Gauss transform, zero-lag cross-correlation, seismic migration, imaging condition. RESUMO. A migração reversa no tempo (RTM) resolve a equação de onda acústica ou elástica por meio da extrapolação a partir do campo de onda da fonte e do receptor no tempo. Uma imagem migrada é obtida aplicando um critério conhecido como condição de imagem. A correlação cruzada entre campos de onda de fonte e receptor é a condição de imagem comumente usada. No entanto, esta condição de imagem produz ruído espacial de baixa frequência, chamados artefatos, devido à correlação indesejada das ondas de mergulho, cabeça e retrodifusão. Várias técnicas têm sido propostas para reduzir a ocorrência de artefatos. Operadores derivados como Laplaciano são os mais utilizados. Neste trabalho, propomos uma técnica baseada em um filtro de fase espiral que varia de 0 a 2π, e um filtro passabanda de amplitude toroidal, conhecido como transformada de Laguerre-Gauss. Através de experimentos numéricos, apresentamos a aplicação deste filtro particular em três conjuntos de dados sintéticos. Além disso, apresentamos um estudo comparativo espectral de imagens obtidas pela condição de imagem de correlação cruzada atraso zero, a filtragem de Laplaciano e a filtragem Laguerre-Gauss, mostrando suas características de frequência. Apresentamos evidências não somente com campos simulados de velocidade ruidosa, mas também por comparação com os gradientes de campo de velocidade do modelo que este método melhora as imagens RTM, reduzindo os artefatos e aumentando notavelmente os eventos reflexivos. Palavras-chave: Transformação de Laguerre-Gauss, correlação cruzada atraso zero, migração sísmica, condição de imagem.


Geophysics ◽  
2019 ◽  
Vol 84 (4) ◽  
pp. S341-S353
Author(s):  
Daniel E. Revelo ◽  
Reynam C. Pestana

The separation of up- and downgoing wavefields is an important technique in the processing of multicomponent recorded data, propagating wavefields, and reverse time migration (RTM). Most of the previous methods for separating up/down propagating wavefields can be grouped according to their implementation strategy: a requirement to save time steps to perform Fourier transform over time or construction of the analytical wavefield through a solution of the wave equation twice (one for the source and another for the Hilbert-transformed source), in which both strategies have a high computational cost. For computing the analytical wavefield, we are proposing an alternative method based on the first-order partial equation in time and by just solving the wave equation once. Our strategy improves the computation of wavefield separation, and it can bring the causal imaging condition into practice. For time extrapolation, we are using the rapid expansion method to compute the wavefield and its first-order time derivative and then we can compute the analytical wavefield. By computing the analytical wavefield, we can, therefore, separate the wavefield into up- and downgoing components for each time step in an explicit way. Applications to synthetic models indicate that our method allows performing the wavefield decomposition similarly to the conventional method, as well as a potential application for the 3D case. For RTM applications, we can now use the causal imaging condition for several synthetic examples. Acoustic RTM up/down decomposition demonstrates that it can successfully remove the low-frequency noise, which is common in the typical crosscorrelation imaging condition, and it is usually removed by applying a Laplacian filter. Moreover, our method is efficient in terms of computational time when compared to RTM using an analytical wavefield computed by two propagations, and it is a little more costly than conventional RTM using the crosscorrelation imaging condition.


Geophysics ◽  
2018 ◽  
Vol 83 (6) ◽  
pp. S569-S577 ◽  
Author(s):  
Yang Zhao ◽  
Houzhu Zhang ◽  
Jidong Yang ◽  
Tong Fei

Using the two-way elastic-wave equation, elastic reverse time migration (ERTM) is superior to acoustic RTM because ERTM can handle mode conversions and S-wave propagations in complex realistic subsurface. However, ERTM results may not only contain classical backscattering noises, but they may also suffer from false images associated with primary P- and S-wave reflections along their nonphysical paths. These false images are produced by specific wave paths in migration velocity models in the presence of sharp interfaces or strong velocity contrasts. We have addressed these issues explicitly by introducing a primary noise removal strategy into ERTM, in which the up- and downgoing waves are efficiently separated from the pure-mode vector P- and S-wavefields during source- and receiver-side wavefield extrapolation. Specifically, we investigate a new method of vector wavefield decomposition, which allows us to produce the same phases and amplitudes for the separated P- and S-wavefields as those of the input elastic wavefields. A complex function involved with the Hilbert transform is used in up- and downgoing wavefield decomposition. Our approach is cost effective and avoids the large storage of wavefield snapshots that is required by the conventional wavefield separation technique. A modified dot-product imaging condition is proposed to produce multicomponent PP-, PS-, SP-, and SS-images. We apply our imaging condition to two synthetic models, and we demonstrate the improvement on the image quality of ERTM.


2018 ◽  
Vol 8 (2) ◽  
Author(s):  
Juan Guillermo Paniagua Castrillón ◽  
Olga Lucía Quintero- Montoya

Low-frequency artifacts in reverse time migration result from unwanted cross-correlation of the source and receiver wavefields at non-reflecting points along ray-paths. These artifacts can hide important details in migrated models and increase poor interpretation risk. Some methods have been proposed to avoid or reduce the number of these artifacts, preserving reflections, and improving model quality, implementing other strategies such as modification of the wave equation, proposing other imaging conditions, and using image filtering techniques. One of these methods uses wavefield decomposition, correlating components of the wavefields that propagate in opposite directions. We propose a method for extracting directional information from the RTM imaging condition wavefields to obtain characteristics allowing for better, more refined imaging. The method works by separating directional information about the wavefields based on the continuous wavelet transform (CWT), and the analysis of the main changes on the frequency content revealed within the scalogram obtained by a Gaussian wavelet family. Through numerical applications, we demonstrate that this method can effectively remove undesired artifacts in migrated images. In addition, we use the Laguerre-Gauss filtering to improve the results obtained with the proposed method.


Geophysics ◽  
2017 ◽  
Vol 82 (5) ◽  
pp. S359-S376 ◽  
Author(s):  
Chen Tang ◽  
George A. McMechan

Because receiver wavefields reconstructed from observed data are not as stable as synthetic source wavefields, the source-propagation vector and the reflector normal have often been used to calculate angle-domain common-image gathers (ADCIGs) from reverse time migration. However, the existing data flows have three main limitations: (1) Calculating the propagation direction only at the wavefields with maximum amplitudes ignores multiarrivals; using the crosscorrelation imaging condition at each time step can include the multiarrivals but will result in backscattering artifacts. (2) Neither amplitude picking nor Poynting-vector calculations are accurate for overlapping wavefields. (3) Calculating the reflector normal in space is not accurate for a structurally complicated reflection image, and calculating it in the wavenumber ([Formula: see text]) domain may give Fourier truncation artifacts. We address these three limitations in an improved data flow with two steps: During imaging, we use a multidirectional Poynting vector (MPV) to calculate the propagation vectors of the source wavefield at each time step and output intermediate source-angle-domain CIGs (SACIGs). After imaging, we use an antitruncation-artifact Fourier transform (ATFT) to convert SACIGs to ADCIGs in the [Formula: see text]-domain. To achieve the new flow, another three innovative aspects are included. In the first step, we develop an angle-tapering scheme to remove the Fourier truncation artifacts during the wave decomposition (of MPV) while preserving the amplitudes, and we use a wavefield decomposition plus angle-filter imaging condition to remove the backscattering artifacts in the SACIGs. In the second step, we compare two algorithms to remove the Fourier truncation artifacts that are caused by the plane-wave assumption. One uses an antileakage FT (ALFT) in local windows; the other uses an antitruncation-artifact FT, which relaxes the plane-wave assumption and thus can be done for the global space. The second algorithm is preferred. Numerical tests indicate that this new flow (source-side MPV plus ATFT) gives high-quality ADCIGs.


Geophysics ◽  
2011 ◽  
Vol 76 (1) ◽  
pp. S29-S39 ◽  
Author(s):  
Faqi Liu ◽  
Guanquan Zhang ◽  
Scott A. Morton ◽  
Jacques P. Leveille

Reverse-time migration (RTM) exhibits great superiority over other imaging algorithms in handling steeply dipping structures and complicated velocity models. However, low-frequency, high-amplitude noises commonly seen in a typical RTM image have been one of the major concerns because they can seriously contaminate the signals in the image if they are not handled properly. We propose a new imaging condition to effectively and efficiently eliminate these specific noises from the image. The method works by first decomposing the source and receiver wavefields to their one-way propagation components, followed by applying a correlation-based imaging condition to the appropriate combinations of the decomposed wavefields. We first give the physical explanation of the principle of such noises in the conventional RTM image. Then we provide the detailed mathematical theory for the new imaging condition. Finally, we propose an efficient scheme for its numerical implementation. It replaces the computationally intensive decomposition with the cost-effective Hilbert transform, which significantly improves the efficiency of the imaging condition. Applications to various synthetic and real data sets demonstrate that this new imaging condition can effectively remove the undesired low-frequency noises in the image.


2019 ◽  
Vol 16 (5) ◽  
pp. 894-912
Author(s):  
Feipeng Li ◽  
Jinghuai Gao ◽  
Zhaoqi Gao ◽  
Xiudi Jiang ◽  
Wenbo Sun

Abstract Reverse time migration (RTM) has shown a significant advantage over other imaging algorithms for imaging complex subsurface structures. However, low-wavenumber noise severely contaminates the image, which is one of the main issues in the RTM algorithm. To attenuate the undesired low-wavenumber noise, the causal imaging condition based on wavefield decomposition has been proposed. First, wavefield decompositions are performed to separate the wavefields as up-going and down-going wave components, respectively. Then, to preserve causality, it constructs images by correlating wave components that propagate in different directions. We build a causal imaging condition in this paper. Not only does it consider the up/down wavefield decomposition, but it also applies the decomposition on the horizontal direction to enhance the image quality especially for steeply dipping structures. The wavefield decomposition is conventionally achieved by the frequency-wavenumber (F-K) transform that is very computationally intensive compared with the wave propagation process of the RTM algorithm. To improve the efficiency of the algorithm, we propose a fast implementation to perform wavefield separation using the discrete Hilbert transform via the Graphics Processing Unit. Numerical tests on both the synthetic models and a real data example demonstrate the effectiveness of the proposed method and the efficiency of the optimized implementation scheme. This new imaging condition shows its ability to produce high image quality when applied to both the RTM stack image and also the angle domain common image gathers. The comparison of the total elapsed time for different methods verifies the efficiency of the optimized algorithm.


Geophysics ◽  
2017 ◽  
Vol 82 (4) ◽  
pp. S307-S314 ◽  
Author(s):  
Yibo Wang ◽  
Yikang Zheng ◽  
Qingfeng Xue ◽  
Xu Chang ◽  
Tong W. Fei ◽  
...  

In the implementation of migration of multiples, reverse time migration (RTM) is superior to other migration algorithms because it can handle steeply dipping structures and offer high-resolution images of the complex subsurface. However, the RTM results using two-way wave equation contain high-amplitude, low-frequency noise and false images generated by improper wave paths in migration velocity model with sharp velocity interfaces or strong velocity gradients. To improve the imaging quality in RTM of multiples, we separate the upgoing and downgoing waves in the propagation of source and receiver wavefields. A complex function involved with the Hilbert transform is used in wavefield decomposition. Our approach is cost effective and avoids the large storage of wavefield snapshots required by the conventional wavefield separation technique. We applied migration of multiples with wavefield decomposition on a simple two-layer model and the Sigsbee 2B synthetic data set. Our results demonstrate that the proposed approach can improve the image generated by migration of multiples significantly.


Sign in / Sign up

Export Citation Format

Share Document