Ground penetrating radar for soil-water measurement in a semi-arid climate in the Orkhon River basin, central Mongolia

2021 ◽  
pp. 1-8
Author(s):  
Amarsaikhan Tsogtbaatar ◽  
Takayuki Kawai ◽  
Motoyuki Sato
2020 ◽  
pp. 014459872097336
Author(s):  
Fan Cui ◽  
Jianyu Ni ◽  
Yunfei Du ◽  
Yuxuan Zhao ◽  
Yingqing Zhou

The determination of quantitative relationship between soil dielectric constant and water content is an important basis for measuring soil water content based on ground penetrating radar (GPR) technology. The calculation of soil volumetric water content using GPR technology is usually based on the classic Topp formula. However, there are large errors between measured values and calculated values when using the formula, and it cannot be flexibly applied to different media. To solve these problems, first, a combination of GPR and shallow drilling is used to calibrate the wave velocity to obtain an accurate dielectric constant. Then, combined with experimental moisture content, the intelligent group algorithm is applied to accurately build mathematical models of the relative dielectric constant and volumetric water content, and the Topp formula is revised for sand and clay media. Compared with the classic Topp formula, the average error rate of sand is decreased by nearly 15.8%, the average error rate of clay is decreased by 31.75%. The calculation accuracy of the formula has been greatly improved. It proves that the revised model is accurate, and at the same time, it proves the rationality of the method of using GPR wave velocity calibration method to accurately calculate the volumetric water content.


2015 ◽  
Vol 19 (3) ◽  
pp. 1125-1139 ◽  
Author(s):  
P. Klenk ◽  
S. Jaumann ◽  
K. Roth

Abstract. High-resolution time-lapse ground-penetrating radar (GPR) observations of advancing and retreating water tables can yield a wealth of information about near-surface water content dynamics. In this study, we present and analyze a series of imbibition, drainage and infiltration experiments that have been carried out at our artificial ASSESS test site and observed with surface-based GPR. The test site features a complicated but known subsurface architecture constructed with three different kinds of sand. It allows the study of soil water dynamics with GPR under a wide range of different conditions. Here, we assess in particular (i) the feasibility of monitoring the dynamic shape of the capillary fringe reflection and (ii) the relative precision of monitoring soil water dynamics averaged over the whole vertical extent by evaluating the bottom reflection. The phenomenology of the GPR response of a dynamically changing capillary fringe is developed from a soil physical point of view. We then explain experimentally observed phenomena based on numerical simulations of both the water content dynamics and the expected GPR response.


Geosciences ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 238
Author(s):  
Kenta Iwasaki ◽  
Makoto Tamura ◽  
Hirokazu Sato ◽  
Kazuhiko Masaka ◽  
Daisuke Oka ◽  
...  

The development of a method to easily investigate the spatial distribution of soil moisture and soil hardness in tree windbreaks is necessary because these windbreaks often decline due to inappropriate soil moisture condition and soil compaction. This research examined the applicability of ground-penetrating radar (GPR) and a combined penetrometer–moisture probe (CPMP) for evaluating the spatial distribution of soil moisture and soil hardness in four windbreaks with different soil characteristics. A GPR-reflecting interface was observed at a less permeable layer in a coastal windbreak and at a depth affected by soil compaction in an inland windbreak with andosol. The spatial distribution of the groundwater table could also be evaluated by examining the attenuation of GPR reflection in a coastal windbreak. In contrast, GPR was not applicable in an inland windbreak with peat because of high soil water content near the soil surface. The CPMP could detect vertical distributions of soil hardness and soil water content regardless of soil type. The CPMP was useful for interpreting GPR profiles, and GPR was useful for interpolating the information about the horizontal distribution of soil moisture and soil hardness between survey points made with the CPMP. Thus, the combination of GPR and a CPMP is ideal for examining the two-dimensional spatial distribution of soil moisture and soil hardness at windbreaks with soils for which both methods are applicable.


Geophysics ◽  
2008 ◽  
Vol 73 (4) ◽  
pp. J15-J23 ◽  
Author(s):  
Holger Gerhards ◽  
Ute Wollschläger ◽  
Qihao Yu ◽  
Philip Schiwek ◽  
Xicai Pan ◽  
...  

Ground-penetrating radar is a fast noninvasive technique that can monitor subsurface structure and water-content distribution. To interpret traveltime information from single common-offset measurements, additional assumptions, such as constant permittivity, usually are required. We present a fast ground-penetrating-radar measurement technique using a multiple transmitter-and-receiver setup to measure simultaneously the reflector depth and average soil-water content. It can be considered a moving minicommon-midpoint measurement. For a simple analysis, we use a straightforward evaluation procedure that includes two traveltimes to the same reflector, obtained from different antenna separations. For a more accurate approach, an inverse evaluation procedure is added, using traveltimes obtained from all antenna separations at one position and its neighboring measurement locations. The evaluation of a synthetic data set with a lateral variability in reflector depth and an experimental example with a large variability in soil-water content are introduced to demonstrate the applicability for field-scale measurements. The crucial point for this application is the access to absolute traveltimes, which are difficult to determine accurately from common-offset measurements.


Sign in / Sign up

Export Citation Format

Share Document