Influence of solids retention time on membrane fouling: characterization of extracellular polymeric substances and soluble microbial products

Biofouling ◽  
2015 ◽  
Vol 31 (2) ◽  
pp. 181-191 ◽  
Author(s):  
Liang Duan ◽  
Zhiyong Tian ◽  
Yonghui Song ◽  
Wei Jiang ◽  
Yuan Tian ◽  
...  
Processes ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1525
Author(s):  
Santiago Pacheco-Ruiz ◽  
Sonia Heaven ◽  
Charles J. Banks

Four flat-sheet submerged anaerobic membrane bioreactors ran for 242 days on a simulated domestic wastewater with low Chemical Oxygen Demand (COD) and high suspended solids. Organic loading was maintained around 1.0 g COD L−1 day−1, while solids retention time (SRT) was varied from 20–90 days. This was achieved at a constant membrane flux, maintained by adjusting transmembrane pressure (TMP) in the range 1.8-9.8 kPa. Membrane fouling was assessed based on the required TMP, with mixed liquors characterised using capillary suction time, frozen image centrifugation and quantification of extracellular polymeric substances (EPS). SRT had a significant effect on these parameters: fouling was least at an SRT of 30 days and highest at 60 days, with some reduction as this extended to 90 days. Operation at SRT <30 days showed no further benefits. Although operation at a short SRT was optimal for membrane performance it led to lower specific methane productivity, higher biomass yields and higher effluent COD. Short SRT may also have accelerated the loss of essential trace elements, leading to reduced performance under these conditions. A COD-based mass balance was conducted, including both biomass and methane dissolved in the effluent.


Molecules ◽  
2019 ◽  
Vol 24 (16) ◽  
pp. 2867 ◽  
Author(s):  
Petros K. Gkotsis ◽  
Anastasios I. Zouboulis

Biomass characteristics are regarded as particularly influential for fouling in Membrane Bio-Reactors (MBRs). They primarily include the Mixed Liquor Suspended Solids (MLSS), the colloids and the Extracellular Polymeric Substances (EPS). Among them, the soluble part of EPS, which is also known as Soluble Microbial Products (SMP), is the most significant foulant, i.e., it is principally responsible for membrane fouling and affects all fundamental fouling indices, such as the Trans-Membrane Pressure (TMP) and the membrane resistance and permeability. Recent research in the field of MBRs, tends to consider the carbohydrate fraction of SMP (SMPc) the most important characteristic for fouling, mainly due to the hydrophilic and gelling properties, which are exhibited by polysaccharides and allow them to be easily attached on the membrane surface. Other wastewater and biomass characteristics, which affect indirectly membrane fouling, include temperature, viscosity, dissolved oxygen (DO), foaming, hydrophobicity and surface charge. The main methods employed for the characterization and assessment of biomass quality, in terms of filterability and fouling potential, can be divided into direct (such as FDT, SFI, TTF100, MFI, DFCM) or indirect (such as CST, TOC, PSA, RH) methods, and they are shortly presented in this review.


2012 ◽  
Vol 401-402 ◽  
pp. 48-55 ◽  
Author(s):  
R. Van den Broeck ◽  
J. Van Dierdonck ◽  
P. Nijskens ◽  
C. Dotremont ◽  
P. Krzeminski ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document