The Automatic System of the Projection X-ray Microscope at the Taiwan Photon Source

2021 ◽  
pp. 1-7
Author(s):  
Chien-Yu Lee ◽  
Gung-Chian Yin ◽  
Bo-Yi Chen ◽  
Ming-Ying Hsu
Keyword(s):  
X Ray ◽  
1999 ◽  
Vol 6 (6) ◽  
pp. 1174-1184 ◽  
Author(s):  
A. R. Sandy ◽  
L. B. Lurio ◽  
S. G. J. Mochrie ◽  
A. Malik ◽  
G. B. Stephenson ◽  
...  

2018 ◽  
Vol 24 (S2) ◽  
pp. 200-201 ◽  
Author(s):  
Bi-Hsuan Lin ◽  
Shao-Chin Tseng ◽  
Xiao-Yun Li ◽  
Dai-Jie Lin ◽  
Hsu-Cheng Hsu ◽  
...  
Keyword(s):  
X Ray ◽  

2000 ◽  
Vol 15 (11) ◽  
pp. 2488-2493 ◽  
Author(s):  
A. N. Thorpe ◽  
F. E. Senftle ◽  
M. Holt ◽  
J. Grant ◽  
W. Lowe ◽  
...  

Magnetization measurements, transmission electron microscopy (TEM), and high-resolution micro-x-ray fluorescence (μ-XRF) using a synchrotron radiation source (Advanced Photon Source) were used to examine Fe3O4 particle agglomerates of nominally 10-nm particles at low concentrations (down to 0.03%) in thick epoxy resin samples. The magnetization measurements showed that at low concentrations (<0.5%) the magnetite particles, although closely packed in the agglomerates, did not interact magnetically. Predicated on a 2-μm sample step scan, the μ-XRF results were compatible with the presence of spherical agglomerates due to magnetostatic attraction, and these ranged in size from 100 to several thousand nanometers, as observed in TEM measurements. At smaller step scans the resolution could be significantly improved. Thus, the synchroton μ-XRF method was very useful in detecting very small concentrations of particles in thick samples and could probably be used to detect particles in amounts as low as 10−16 g.


2018 ◽  
Vol 74 (a1) ◽  
pp. a324-a324
Author(s):  
Michael Becker ◽  
Stephen Corcoran ◽  
Dale Ferguson ◽  
Mark Hilgart ◽  
David J. Kissick ◽  
...  

2021 ◽  
Vol 251 ◽  
pp. 04020
Author(s):  
Yu Hu ◽  
Ling Li ◽  
Haolai Tian ◽  
Zhibing Liu ◽  
Qiulan Huang ◽  
...  

Daisy (Data Analysis Integrated Software System) has been designed for the analysis and visualisation of X-ray experiments. To address the requirements of the Chinese radiation facilities community, spanning an extensive range from purely algorithmic problems to scientific computing infrastructure, Daisy sets up a cloud-native platform to support on-site data analysis services with fast feedback and interaction. Furthermore, the plug-in based application is convenient to process the expected high throughput data flow in parallel at next-generation facilities such as the High Energy Photon Source (HEPS). The objectives, functionality and architecture of Daisy are described in this article.


2005 ◽  
Vol 61 (2) ◽  
pp. 129-132 ◽  
Author(s):  
E. N. Caspi ◽  
B. Pokroy ◽  
P. L. Lee ◽  
J. P. Quintana ◽  
E. Zolotoyabko

High-resolution synchrotron powder diffraction measurements were carried out at the 32-ID beamline of the Advanced Photon Source of Argonne National Laboratory in order to clarify the structure of geological aragonite, a widely abundant polymorph of CaCO3. The investigated crystals were practically free of impurity atoms, as measured by wavelength-dispersive X-ray spectroscopy in scanning electron microscopy. A superior quality of diffraction data was achieved by using the 11-channel 111 Si multi-analyzer of the diffracted beam. Applying the Rietveld refinement procedure to the high-resolution diffraction spectra, we were able to extract the aragonite lattice parameters with an accuracy of about 20 p.p.m. The data obtained unambiguously confirm that pure aragonite crystals have orthorhombic symmetry.


2016 ◽  
Vol 41 (4) ◽  
pp. 733 ◽  
Author(s):  
Yves Kayser ◽  
Simon Rutishauser ◽  
Tetsuo Katayama ◽  
Takashi Kameshima ◽  
Haruhiko Ohashi ◽  
...  

2021 ◽  
Vol 16 (12) ◽  
pp. P12017
Author(s):  
H.-W. Luo ◽  
T.-Y. Chung ◽  
C.-H. Lee ◽  
C.-S. Hwang

Abstract The resonant photon energy of an adjustable-phase undulator (APU) is varied with the relative motion of the magnet arrays along the longitudinal direction. There exists, however, a transverse field gradient (TFG) of order 100 T/m in an APU of small gap (∼10 mm). Whereas the TFG might affect the electron beam as it contributes to the dynamic field integral and the radiation integrals, the TFG might also degrade the performance of the synchrotron radiation due to the transverse position-dependent magnetic field. The effects of the TFG on the present Taiwan Photon Source (TPS) and future TPS-upgraded are analyzed to investigate the feasibility of an APU that operates in the soft x-ray region.


Sign in / Sign up

Export Citation Format

Share Document