Plating System Design Determines Mechanical Environment in Long Bone Mid-shaft Fractures: A Finite Element Analysis

2019 ◽  
Vol 33 (8) ◽  
pp. 699-708 ◽  
Author(s):  
Jianzhao Wang ◽  
Xiaojuan Zhang ◽  
Sheng Li ◽  
Bing Yin ◽  
Guobin Liu ◽  
...  
Author(s):  
Cédric P Laurent ◽  
Béatrice Böhme ◽  
Jolanthe Verwaerde ◽  
Luc Papeleux ◽  
Jean-Philippe Ponthot ◽  
...  

Osteosynthesis for canine long bones is a complex process requiring knowledge of biology, surgical techniques and (bio)mechanical principles. Subject-specific finite element analysis constitutes a promising tool to evaluate the effect of surgical intervention on the global properties of a bone–implant construct, but suffers from a lack of validation. In this study, the biomechanical behavior of 10 canine humeri was compared before and after creation of a 10 mm bone defect stabilized with an eight-hole locking compression plate (Synthes®) and two locking screws on each fragment. The response under compression of both intact and plated samples was measured experimentally and reproduced with a finite element model. The experimental stiffness ratio between plated and intact bone was equal to 0.39 ± 0.06. A subject-specific finite element analysis including density-dependent elasto-plastic material properties for canine bone and automatic generation of orthopedic implants was then conducted to recover these experimental results. The stiffness of intact and plated samples could be predicted, with no significant differences with experimental data. The simulated stiffness ratio between plated and intact canine bone was equal to 0.43 ± 0.03. This study constitutes a first step toward the building of a virtual database of pre-computed cases, aiming at helping the veterinary surgeons to make decisions regarding the most suited orthopedic solution for a given dog and a given fracture.


Author(s):  
Gregory Lowen ◽  
Katherine Garrett ◽  
Moore-Lotridge Stephanie ◽  
Sasidhar Uppuganti ◽  
Scott A. Guelcher ◽  
...  

Abstract Delayed long bone fracture healing and nonunion continue to be a significant socioeconomic burden. While mechanical stimulation is known to be an important determinant of the bone repair process, understanding how the magnitude, mode, and commencement of interfragmentary strain (IFS) affect fracture healing can guide new therapeutic strategies to prevent delayed healing or non-union. Mouse models provide a means to investigate the molecular and cellular aspects of fracture repair, yet there is only one commercially available, clinically-relevant, locking intramedullary nail (IMN) currently available for studying long bone fractures in rodents. Having access to alternative IMNs would allow a variety of mechanical environments at the fracture site to be evaluated, and the purpose of this proof-of-concept finite element analysis study is to identify which IMN design parameters have the largest impact on IFS in a murine transverse femoral osteotomy model. Using the dimensions of the clinically relevant IMN as a guide, the nail material, distance between interlocking screws, and clearance between the nail and endosteal surface were varied between simulations. Of these parameters, changing the nail material from stainless steel (SS) to polyetheretherketone (PEEK) had the largest impact on IFS. Reducing the distance between the proximal and distal interlocking screws substantially affected IFS only when nail modulus was low. Therefore, IMNs with low modulus (e.g., PEEK) can be used alongside commercially available SS nails to investigate the effect of initial IFS or stability on fracture healing with respect to different biological conditions of repair in rodents.


2012 ◽  
Vol 538-541 ◽  
pp. 3047-3050
Author(s):  
Nai Gen Li ◽  
Nian Jun Zhang ◽  
Meng Guo Zhu

The mechanical system design method based on the Service Oriented Architecture was proposed through the service-oriented architecture technology and mechanical system design theory analysis .The machine arm system design finite element analysis process was presented. Based on the TomCat platform design, Service oriented architecture design of the robot arm system design based on finite element analysis process were established. This design method was verified technically.


2021 ◽  
Vol 11 (8) ◽  
pp. 3689
Author(s):  
Martin Goubej ◽  
Jana Königsmarková ◽  
Ronald Kampinga ◽  
Jakko Nieuwenkamp ◽  
Stéphane Paquay

The paper deals with development of a methodology for mechatronic system design using state-of-the-art model-based system engineering methods. A simple flexible robotic arm is considered as a benchmark problem for the evaluation of various techniques used in the phases of modelling, analysis, control system design, validation, and implementation. The flexible nature of the mechanical structure introduces inherently oscillatory dynamics in the target bandwidth range, which complicates all the above-mentioned design steps. This paper demonstrates the process of deriving a complex nonlinear model of the flexible arm setup. An initial idea about the plant dynamics is acquired from analytical modelling using the Euler–Bernoulli beam theory. A more thorough understanding is subsequently acquired from finite element analysis. Linearisation and order reduction are the next steps necessary for the derivation of a simplified control-relevant model. A time-dependent variable parameter of load mass position is considered and a robust controller is subsequently designed in order to fulfil certain performance criteria for all the admissible plant configurations. This is performed using a recent H-infinity loop shaping method for fixed structure controller design. The results are validated by means of a physical plant, comparing the experimental data with the model predictions.


Sign in / Sign up

Export Citation Format

Share Document