Impact of organic fertilisation on lettuce biomass production according to the cultivation duration in tropical soils

Author(s):  
Falilou Diallo ◽  
Dominique Masse ◽  
Karamoko Diarra ◽  
Frédéric Feder
2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
Paulo Henrique Müller da Silva ◽  
Fabio Poggiani ◽  
Jean Paul Laclau

In most Brazilian cities sewage sludge is dumped into sanitary landfills, even though its use in forest plantations as a fertilizer and soil conditioner might be an interesting option. Sewage sludge applications might reduce the amounts of mineral fertilizers needed to sustain the productivity on infertile tropical soils. However, sewage sludge must be applied with care to crops to avoid soil and water pollution. The aim of our study was to assess the effects of dry and wet sewage sludges on the growth and nutrient cycling ofEucalyptus grandisplantations established on the most common soil type for Brazilian eucalypt plantations. Biomass production and nutrient cycling were studied over a 36-month period in a complete randomized block design. Four experimental treatments were compared: wet sewage sludge, dry sludge, mineral fertilizer, and no fertilizer applications. The two types of sludges as well as mineral fertilizer increased significantly the biomass ofEucalyptustrees. Wood biomass productions 36 months after planting were similar in the sewage sludge and mineral fertilization treatments (about 80 tons ha−1) and 86% higher than in the control treatment. Sewage sludge application also affected positively leaf litter production and significantly increased nutrient transfer among the components of the ecosystem.


Planta Medica ◽  
2011 ◽  
Vol 77 (12) ◽  
Author(s):  
LM Papaspyridi ◽  
E Topakas ◽  
N Aligiannis ◽  
P Christakopoulos ◽  
AL Skaltsounis ◽  
...  

2005 ◽  
Vol 33 (1) ◽  
pp. 251-254 ◽  
Author(s):  
Éva Lehoczky ◽  
András Kismányoky ◽  
Tamás Kismányoky

2013 ◽  
Vol 27 (3) ◽  
pp. 239-246 ◽  
Author(s):  
A.E. Ajayi ◽  
M.S. Dias Junior ◽  
N. Curi ◽  
I. Oladipo

Abstract This study aimed to investigate the mineralogy, moisture retention, and the compressive response of two agricultural soils from South West Nigeria. Undisturbed soil cores at the A and B horizons were collected and used in chemical and hydrophysical characterization and confined compression test. X-ray diffractograms of oriented fine clay fractions were also obtained. Our results indicate the prevalence of kaolinite minerals relating to the weathering process in these tropical soils. Moisture retention by the core samples was typically low with pre-compression stress values ranging from50 to 300 kPa at both sites. Analyses of the shape of the compression curves highlight the influence of soil moisture in shifts from the bi-linear to S-shaped models. Statistical homogeneity test of the load bearing capacity parameters showed that the soil mineralogy influences the response to loading by these soils. These observations provide a physical basis for the previous classification series of the soils in the studied area. We showed that the internal strength attributes of the soil could be inferred from the mineralogical properties and stress history. This could assist in decisions on sustainable mechanization in a datapoor environment.


Sign in / Sign up

Export Citation Format

Share Document