Concentrated biogas slurry enhanced soil fertility and tomato quality

Author(s):  
Fang-Bo Yu ◽  
Xi-Ping Luo ◽  
Cheng-Fang Song ◽  
Miao-Xian Zhang ◽  
Sheng-Dao Shan
Author(s):  
Ariane Krause

AbstractThe starting point of this work is the intention of two farmers’ initiatives to disseminate locally developed and adapted cooking and sanitation technologies to smallholder households in Karagwe District, in northwest Tanzania. These technologies include improved cooking stoves (ICSs), such as microgasifiers, and a system combining biogas digesters and burners for cooking, as well as urine-diverting dry toilets, and thermal sterilisation/pasteurisation for ecological sanitation (EcoSan). Switching to the new alternatives could lead to a higher availability of domestic residues for soil fertility management. These residues include biogas slurry from anaerobic digestion, powdery biochar from microgasifiers and sanitised human excreta from EcoSan facilities. Such recycling-driven approaches address an existing problem for many smallholders in sub-Saharan Africa, namely, the lack of soil amenders to sufficiently replenish soil nutrients and soil organic matter (SOM) in soils used for agricultural activity. This example from Tanzania systematically examines the nexus of ‘energy-sanitation-agriculture’ in smallholder farming systems. The short-term experiments demonstrated that all soil amenders that were analysed could significantly enhance crop productivity. CaSa-compost – the product of co-composting biochar with sanitised human excreta – quadrupled grain yields. The observed stimulation of crop yield and also plant nutrition is attributed to improved nutrient availability caused by a direct increase of soil pH and of plant-available phosphorus (P) in the soil. The assessment of the lasting soil implications revealed that CaSa-compost and biogas slurry both show the long-term potential to roughly double yields of maize. Corresponding nutrient requirements can be adequately compensated through residue capturing and subsistence production of soil amenders. The potential of CaSa-compost for sustainable soil fertility management is superior to that of standard compost, especially with respect to liming, replenishing soil P and restoring SOM. Biogas slurry, however, yields inferior results in all aspects when compared to compost amendments.


2020 ◽  
Vol 4 (2) ◽  
pp. 780-787
Author(s):  
Ibrahim Hassan Hayatu ◽  
Abdullahi Mohammed ◽  
Barroon Ahmad Isma’eel ◽  
Sahabi Yusuf Ali

Soil fertility determines a plant's development process that guarantees food sufficiency and the security of lives and properties through bumper harvests. The fertility of soil varies according to regions, thereby determining the type of crops to be planted. However, there is no repository or any source of information about the fertility of the soil in any region in Nigeria especially the Northwest of the country. The only available information is soil samples with their attributes which gives little or no information to the average farmer. This has affected crop yield in all the regions, more particularly the Northwest region, thus resulting in lower food production.  Therefore, this study is aimed at classifying soil data based on their fertility in the Northwest region of Nigeria using R programming. Data were obtained from the department of soil science from Ahmadu Bello University, Zaria. The data contain 400 soil samples containing 13 attributes. The relationship between soil attributes was observed based on the data. K-means clustering algorithm was employed in analyzing soil fertility clusters. Four clusters were identified with cluster 1 having the highest fertility, followed by 2 and the fertility decreases with an increasing number of clusters. The identification of the most fertile clusters will guide farmers on where best to concentrate on when planting their crops in order to improve productivity and crop yield.


2017 ◽  
Vol 4 (2) ◽  
pp. 87-91
Author(s):  
Ekamaida Ekamaida

The soil fertility aspect is characterized by the good biological properties of the soil. One important element of the soil biological properties is the bacterial population present in it. This research was conducted in the laboratory of Microbiology University of Malikussaleh in the May until June 2016. This study aims to determine the number of bacterial populations in soil organic and inorganic so that can be used as an indicator to know the level of soil fertility. Data analysis was done by T-Test that is by comparing the mean of observation parameter to each soil sample. The sampling method used is a composite method, which combines 9 of soil samples taken from 9 sample points on the same plot diagonally both on organic soil and inorganic soil. The results showed the highest bacterial population was found in total organic soil cfu 180500000 and total inorganic soil cfu 62.500.000


2018 ◽  
Vol 20 (5) ◽  
pp. 84
Author(s):  
Yingjie Hu ◽  
Xiangbin Kong ◽  
Yuzhen Zhang

Sign in / Sign up

Export Citation Format

Share Document