Isolated Zero-Voltage-Switching DC-DC Converter with High Voltage Gain

EPE Journal ◽  
2013 ◽  
Vol 23 (1) ◽  
pp. 5-12 ◽  
Author(s):  
Do Hyun-Lark
Electronics ◽  
2021 ◽  
Vol 10 (16) ◽  
pp. 1940
Author(s):  
Nhat-Truong Phan ◽  
Anh-Dung Nguyen ◽  
Yu-Chen Liu ◽  
Huang-Jen Chiu

This paper analyzes the zero-voltage switching (ZVS) for all switches in a high-voltage-gain bidirectional DC–DC converter in triangular conduction mode (TCM) operation without any auxiliary components. From the ZVS condition, the reverse inductor current can be derived, and the required dead-time duration between the main switches and SR switches can be determined, which leads to a reduction in the duty cycle loss. Moreover, the relationship between switching frequency and load in TCM operation can be determined, which helps to reduce the peak-to-peak inductor current and reduce the conduction loss at light load. An experimental prototype of a high-voltage-gain bidirectional DC–DC converter is implemented with a maximum output power of 48 W. The result shows the peak efficiency of 97% and 96.8% in the forward and reverse directions, respectively.


2013 ◽  
Vol 732-733 ◽  
pp. 1175-1178
Author(s):  
Hong Zhang ◽  
Gui Xin Wang ◽  
Hao Yan ◽  
Lu Zhou Zhang

In this research, a high-voltage direct current zero voltage switching (ZVS) PWM half-bridge converter is proposed. The parameters of the converter as follows: the input voltage is up to 4000V;the output voltage is 600V.The new ZVS PWM TL converter has neutral point clamping diodes and flying capacitor. This research is going to analyze the working principle of circuit witch thus realizing the zero voltage switching and the circuit parameters selection. Moreover, circuits simulation is carried out by MATLAB to verify the reliability and feasibility of this DC/DC converter topology.


2014 ◽  
Vol 573 ◽  
pp. 83-88
Author(s):  
A. Marikkannan ◽  
B.V. Manikandan ◽  
S. Jeyanthi

The interest toward the application of fuel cells is increasing in the last years mainly due to the possibility of highly efficient decentralized clean energy generation. The output voltage of fuel-cell stacks is generally below 50 V. Consequently, low-power applications with high output voltage require a high gain for proper operation. A zero-voltage-switching (ZVS) dc–dc converter with high voltage gain is proposed for fuel cell as a front-end converter. It consists of a ZVS boost converter stage and a ZVS half-bridge converter stage and two stages are merged into a single stage. The ZVS boost converter stage provides a continuous input current and ZVS operation of the power switches. The ZVS half-bridge converter stage provides a high voltage gain. The principle of operation and system analysis are presented. Theoretical analysis and simulation result of the proposed converter were verified.


Sign in / Sign up

Export Citation Format

Share Document