From ultrafast to slow: Heating rate dependence of the glass transition temperature in metallic systems

2016 ◽  
Vol 96 (12) ◽  
pp. 454-460 ◽  
Author(s):  
Stefan Küchemann ◽  
Goodwin Gibbins ◽  
Joe Corkerton ◽  
Eleanor Brug ◽  
Jonas Ruebsam ◽  
...  
1995 ◽  
Vol 398 ◽  
Author(s):  
K. Nakayama ◽  
K. Kojima ◽  
N. Takahashi ◽  
Y. Masaki ◽  
A. Kitagawa ◽  
...  

ABSTRACTThe heating-rate dependence of crystallization temperature, Tc, and the glass transition temperature, Tg, is studied from the view points of nucleation and fragmentation processes in disordered structures. Tc and Tg are expected to increase monotonically with heating rate. Such behaviors of Tc and Tg are classified into four characteristic regions with respect to the heating rate. Results are summarized in the Transient Phase Diagram where Tc and Tg are given as a function of heating rate. The scaling rule in the Transient Phase Diagram is given.


1989 ◽  
Vol 68 (9) ◽  
pp. 1313-1315 ◽  
Author(s):  
C.W. Fairhurst ◽  
D.T. Hashinger ◽  
S.W. Twiggs

Porcelain-fused-to-metal restorations are fired several hundred degrees above the glass-transition temperature and cooled rapidly through the glass-transition temperature range. Thermal expansion data from room temperature to above the glass-transition temperature range are important for the thermal expansion of the porcelain to be matched to the alloy. The effect of heating rate during measurement of thermal expansion was determined for NBS SRM 710 glass and four commercial opaque and body porcelain products. Thermal expansion data were obtained at heating rates of from 3 to 30°C/min after the porcelain was cooled at the same rate. By use of the Moynihan equation (where Tg systematically increases in temperature with an increase in cooling/heating rate), the glass-transition temperatures (Tg) derived from these data were shown to be related to the heating rate.


2011 ◽  
Vol 316-317 ◽  
pp. 55-58 ◽  
Author(s):  
Deepshikha Sharma ◽  
Saneel K. Thakur

Alloys of (Se100-xBix)90Te10 (x =0, 0.5, 1, 1.5, 2, 2.5, 3 at.%) were prepared by using a conventional melt-quench technique. The samples under investigation were characterized using X-ray diffraction (XRD) and differential analysis (DTA) at a heating rate of 10K/min. It was found, from the XRD studies, that the alloys were amorphous in nature. The glass transition temperatures of the alloys were found to increase with increasing bismuth content. This increase in the glass transition temperature was explained on the basis of a chemically ordered network model.


2007 ◽  
Vol 555 ◽  
pp. 165-170
Author(s):  
F. Skuban ◽  
S.R. Lukić ◽  
D.M. Petrović ◽  
Mirjana Šiljegović

Transformations of glasses from the multicomponent pseudobinary system (As2Se3)100−x(SbSI)x were analyzed from the aspect of determining the glass transition temperature Tg, activation energy of the process Et, and characteristic changes of the specific heat. The established dependence of Tg on glass composition and heating rate served as the basis for determining the activation energy of glass transition process Et. An abrupt increase in the specific heat cp at the glass transition temperature was analyzed with the aim of classifying the materials according to the criterion of the so-called 'fragility'. It was found that the investigated glasses, i.e. their melts, belong to the group of thermodynamically 'strong' melts.


Sign in / Sign up

Export Citation Format

Share Document