Evaluation of residual stresses and structural-phase composition in longitudinal welds of high pressure pipes

2021 ◽  
pp. 1-5
Author(s):  
A.A. Antonov ◽  
L.A. Efimenko ◽  
O.E. Kapustin ◽  
D.V. Ponomarenko ◽  
I.Yu. Utkin ◽  
...  
Crystals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 746
Author(s):  
Meiling Hong ◽  
Lidong Dai ◽  
Haiying Hu ◽  
Xinyu Zhang

A series of investigations on the structural, vibrational, and electrical transport characterizations for Ga2Se3 were conducted up to 40.2 GPa under different hydrostatic environments by virtue of Raman scattering, electrical conductivity, high-resolution transmission electron microscopy, and atomic force microscopy. Upon compression, Ga2Se3 underwent a phase transformation from the zinc-blende to NaCl-type structure at 10.6 GPa under non-hydrostatic conditions, which was manifested by the disappearance of an A mode and the noticeable discontinuities in the pressure-dependent Raman full width at half maximum (FWHMs) and electrical conductivity. Further increasing the pressure to 18.8 GPa, the semiconductor-to-metal phase transition occurred in Ga2Se3, which was evidenced by the high-pressure variable-temperature electrical conductivity measurements. However, the higher structural transition pressure point of 13.2 GPa was detected for Ga2Se3 under hydrostatic conditions, which was possibly related to the protective influence of the pressure medium. Upon decompression, the phase transformation and metallization were found to be reversible but existed in the large pressure hysteresis effect under different hydrostatic environments. Systematic research on the high-pressure structural and electrical transport properties for Ga2Se3 would be helpful to further explore the crystal structure evolution and electrical transport properties for other A2B3-type compounds.


Author(s):  
Linfei Yang ◽  
Jianjun Jiang ◽  
Lidong Dai ◽  
Haiying Hu ◽  
Meiling Hong ◽  
...  

The vibrational, electrical and structural properties of Ga2S3 were explored by Raman spectroscopy, EC measurements, HRTEM and First-principles theoretical calculations under different pressure environments up to 36.4 GPa.


2020 ◽  
Vol 45 (58) ◽  
pp. 33047-33058
Author(s):  
Lan-Ting Shi ◽  
Cui-E Hu ◽  
Alfonso Muñoz ◽  
Lin-Xiang Ji ◽  
Yao-Yao Huang ◽  
...  

2016 ◽  
Vol 657 ◽  
pp. 215-223 ◽  
Author(s):  
Jenő Gubicza ◽  
Moustafa El-Tahawy ◽  
Yi Huang ◽  
Hyelim Choi ◽  
Heeman Choe ◽  
...  

2021 ◽  
Vol 23 (2) ◽  
pp. 147-162
Author(s):  
Undrakh Mishigdorzhiyn ◽  
◽  
Nikolay Ulakhanov ◽  
Aleksandr Tikhonov ◽  
Pavel Gulyashinov ◽  
...  

Introduction. Control and management of technological residual stresses (TRS) are among the most critical mechanical engineering technology tasks. Boriding can provide high physical and mechanical properties of machine parts and tools with minimal impact on the stress state in the surface layers. The purpose of this work is to determine the temperature modes of diffusion boriding, contributing to a favorable distribution of TRS in the surface layer of die steel 3Kh2V8F. The paper considers the results of studies on the TRS determination by the experimental method on the UDION-2 installation in diffusion layers on the studied steel surface. Boriding was carried out in containers with a powder mixture of boron carbide and sodium fluoride as an activator at a temperature of 950 °C and 1050 °C for 2 hours. The obtained samples of steels with a diffusion layer were examined using an optical microscope and a scanning electron microscope (SEM); determined the layers' microhardness, elemental, and phase composition. The experiments resulted in the following findings: as the boriding temperature rose from 950 °C to 1050 °C, the diffusion layer's thickness increased from 20 to 105 μm. The low-temperature mode of thermal-chemical treatment (TCT) led to the formation of iron boride Fe2B with a maximum boron content of 6 % and a microhardness up to 1250 HV. A high-temperature mode resulted in FeB formation with a top boron content of 11 % and a microhardness up to 1880 HV. Results and Discussions. It is found that boriding at 950 °C led to a more favorable distribution of compression TRS in the diffusion layer. However, significant TRS fluctuations in the diffusion layer and the adjacent (transitional) zone could affect the operational properties after TCT at a given temperature. An increase in the TCT temperature led to tensile TRS's appearance in the layer's upper zone at a depth of up to 50 μm from the surface. Despite tensile stresses on the diffusion layer surface after high-temperature TCT, the distribution of TCT is smoother than low-temperature boriding.


2016 ◽  
Vol 729 ◽  
pp. 012017 ◽  
Author(s):  
A A Lozovan ◽  
S Ya Betsofen ◽  
A A Ashmarin ◽  
B V Ryabenko ◽  
S V Ivanova

2015 ◽  
Vol 91 (10) ◽  
Author(s):  
J. Ruiz-Fuertes ◽  
A. Friedrich ◽  
O. Gomis ◽  
D. Errandonea ◽  
W. Morgenroth ◽  
...  

2009 ◽  
Vol 29 (2) ◽  
pp. 245-249 ◽  
Author(s):  
A. Nakayama ◽  
M. Einaga ◽  
Y. Tanabe ◽  
S. Nakano ◽  
F. Ishikawa ◽  
...  

2021 ◽  
Vol 4 (5) ◽  
pp. 35-44
Author(s):  
R. El'cov

the main goal of this article is to obtain welded permanent joints of modern thermally hardened aluminum and aluminum-lithium alloys made by laser welding, having mechanical characteristics (temporary tensile resistance, yield strength, elongation at break) and structural-phase composition close to or equal to the base alloy. It is shown for the first time that by controlling the parameters of heat treatment of samples with a welded joint of all studied aluminum-lithium alloys, it is possible to purposefully influence the formation of the specified mechanical properties of the weld by changing the structural and phase composition of the weld. The evolution of the struc-tural and phase composition of welded joints of thermally hardened aluminum and aluminum-lithium alloys has been investigated using modern independent diagnostic methods: for the first time, the use of synchrotron radia-tion diffractometry in combination with high-resolution transmission, scanning electron and optical microscopy. The dependences of the increment of deformation under cyclic loading with amplitudes exceeding the elastic limit on temperature are established. For untreated welded joints, it was found that at +85 C, the inhomogeneity of the deformation increment increases, and its speed increases by 8 times for alloy 1461, 5 times for alloy 1420 and 1.5 times for alloy 1441. At a temperature of -60 0C, alloys 1420 and 1461 have hardening stages, during which the value of deformation decreases at given boundary stress values. At +20 0C, there is a uniform increment of defor-mation and an increase in the amplitude of deformation with an increase in the amplitude of stress. At +85 0C, the strain amplitude does not change with increasing stress amplitude, its value is 0.55-0.5 of the strain amplitude at +20 0C. Based on the research results, technological techniques have been developed that allow obtaining me-chanical characteristics and structural-phase compositions of welded joints close to the main alloy during laser welding of aviation thermally hardened aluminum and aluminum-lithium alloys of the Al-Mg-Cu. Al-Mg-Li, Al-Cu-Mg-Li, Al-Cu-Li systems.


Author(s):  
Lan Mai Thi

We have studied structure of silica glass at different pressures and temperature of 300K by using Molecular Dynamics simulation (MD) method. The model consists of 6000 atoms (2000 Si, 4000 O atoms) with the periodic boundary condition. We applied the Morse-Stretch potentials which describe the pairwise interactions between ions for SiO2 system. There is structural phase transformation from tetrahedra (SiO4) to octahedra (SiO6) network structure. There is splitting in the Si-Si pair radial distribution function (PRDF) at high pressure (100 GPa). The original of this splitting relates to the edge- and face-sharing bonds. The new second peak of the O-O PRDF at the high pressure originates from oxygen atoms of the edge-sharing bonds. Thus, there is rearrangement of O atoms. O atoms have tendency to more order arrangement that leads to form some oxygen hcp and fcc structure in the model at high pressure.


Sign in / Sign up

Export Citation Format

Share Document