The structure, phase composition, and residual stresses of diffusion boride layers formed by thermal-chemical treatment on the die steel surface

2021 ◽  
Vol 23 (2) ◽  
pp. 147-162
Author(s):  
Undrakh Mishigdorzhiyn ◽  
◽  
Nikolay Ulakhanov ◽  
Aleksandr Tikhonov ◽  
Pavel Gulyashinov ◽  
...  

Introduction. Control and management of technological residual stresses (TRS) are among the most critical mechanical engineering technology tasks. Boriding can provide high physical and mechanical properties of machine parts and tools with minimal impact on the stress state in the surface layers. The purpose of this work is to determine the temperature modes of diffusion boriding, contributing to a favorable distribution of TRS in the surface layer of die steel 3Kh2V8F. The paper considers the results of studies on the TRS determination by the experimental method on the UDION-2 installation in diffusion layers on the studied steel surface. Boriding was carried out in containers with a powder mixture of boron carbide and sodium fluoride as an activator at a temperature of 950 °C and 1050 °C for 2 hours. The obtained samples of steels with a diffusion layer were examined using an optical microscope and a scanning electron microscope (SEM); determined the layers' microhardness, elemental, and phase composition. The experiments resulted in the following findings: as the boriding temperature rose from 950 °C to 1050 °C, the diffusion layer's thickness increased from 20 to 105 μm. The low-temperature mode of thermal-chemical treatment (TCT) led to the formation of iron boride Fe2B with a maximum boron content of 6 % and a microhardness up to 1250 HV. A high-temperature mode resulted in FeB formation with a top boron content of 11 % and a microhardness up to 1880 HV. Results and Discussions. It is found that boriding at 950 °C led to a more favorable distribution of compression TRS in the diffusion layer. However, significant TRS fluctuations in the diffusion layer and the adjacent (transitional) zone could affect the operational properties after TCT at a given temperature. An increase in the TCT temperature led to tensile TRS's appearance in the layer's upper zone at a depth of up to 50 μm from the surface. Despite tensile stresses on the diffusion layer surface after high-temperature TCT, the distribution of TCT is smoother than low-temperature boriding.

2021 ◽  
Vol 887 ◽  
pp. 651-656
Author(s):  
Marina V. Polonik

On the basis of previously accumulated irreversible deformations, and, consequently, residual stresses, the process of removing residual stresses in metal workpieces under the action of low and high temperatures is simulated. Boundary value problems are solved and here are described regularities that are responsible for removing residual stresses for processing modes: high-temperature heating - cooling, high-temperature heating - holding - cooling, low-temperature heating - holding - cooling. The holding stage is modeled, taking into account the creep properties of materials under Norton creep conditions. According to the dependences of the obtained exact solutions, it is shown that it is the holding process that leads to the relaxation of residual stresses.


2014 ◽  
Vol 709 ◽  
pp. 403-409 ◽  
Author(s):  
Bauyrzhan K. Rakhadilov ◽  
Mazhyn Skakov ◽  
Erlan Batyrbekov ◽  
Michael Scheffler

The article investigates the changing in the structure and phase composition of the R6M5 high-speed steel surface layer after electrolytic-plasma nitriding. It is found that after electrolytic-plasma nitriding on the R6M5 steel surface, modified layer is formed, which consist from a diffusion layer. It was showed phase composition of difysion layer is changing depending on the nitriding. It is found that electrolytic-plasma nitriding lead to accelerated formation of the modified layer. It is determined that after electrolytic-plasma nitriding on the high-speed steel surface, modified layer is formed, consisting only of the diffusion layer.


Metallurgist ◽  
2016 ◽  
Vol 60 (7-8) ◽  
pp. 739-744
Author(s):  
A. V. Aborkin ◽  
V. E. Vaganov ◽  
N. S. Klimov ◽  
D. V. Kovalenko ◽  
A. V. Sobol’kov

2020 ◽  
Vol 100 (4) ◽  
pp. 39-48
Author(s):  
R.S. Kozhanova ◽  
◽  
B.K. Rakhadilov ◽  
W. Wieleba ◽  
◽  
...  

The features of the formation of low-temperature plasma and its interaction with a metal surface were studied in this work. A qualitative model of the interaction of low-temperature plasma with the steel surface during nitriding has been developed by summarizing the available research results and taking into account the specific features of the electrolyte plasma process. In accordance with this model, in the first moments of the interaction of low-temperature plasma with the steel surface in the near-surface layer, which accelerated formation of the Feα(N) solid solution occurs due to the action of directed bombardment of charged particles, which enhances the adsorption and diffusion of nitrogen into the interior of the material, then dispersed particles of nitride of alloying elements are formed as further saturation in places with an increased level of free energy (at lattice defects, at grain boundaries, etc.). Subsequently, transformations occur in the surface zone of the layer when the limiting solubility of nitrogen in iron is exceeded, which leading to the formation of nitrides of the γ′-phase (Fe4N) and ε-phase (Fe2–3N) in it. Thus, electrolyte plasma nitriding opens up many new possibilities, in particular: varying the nitriding temperature over a wide range (400–700 ºC), targeted production of a nitrided layer consisting only of a diffusion layer without a layer of compounds, while obtaining a diffusion layer with particles γ’-phase (Fe4N) of plate form and with finely dispersed nitrides MN (CrN). The use of an electric discharge in an electrolyte (low-temperature plasma) makes it possible to increase the heating rate and diffusion saturation of the material surface. This work is of practical importance, since the studied method of electrolytic-plasma nitriding makes it possible to obtain a modified surface layer on steels with high physical and mechanical properties.


2016 ◽  
Vol 61 (3) ◽  
pp. 1607-1612 ◽  
Author(s):  
A. Radziszewska ◽  
A. Kranzmann ◽  
I. Dörfel ◽  
M. Mosquera Feijoo ◽  
M. Solecka

AbstractThe paper presents the microstructure, chemical and phase composition of thin scale, obtained as a result of high-temperature corrosion of X20Cr13 stainless steel. Samples were exposed to gas atmosphere of the following composition: 0.25 vol.% of SO2and 99.75 vol.% of Ar at 600 °C for 5 h. As a consequence, thin compact scale was formed on steel surface. This scale consisted of three different zones. An amorphous zone was formed close to steel surface. Then, nanocrystalline zone could be observed. Finally, larger grains were formed during the corrosion process. The analysis of the chemical composition revealed higher concentration of chromium near steel surface. In contrast, to chromium, the content of iron, increased near the scale surface. It was found out that the (Cr, Mn, Fe)5O12phase appeared in the thin scale.


Author(s):  
Dmitriy Demin

The objects of the study were diagnostic features that allow determining the quality of controlling temperature modes of induction crucible melting. For this, in the normalized space of feature factors, which are the content of SiO2 and FeO+Fe2O3 in slag, a discriminant function is constructed and a decision rule is obtained in the form of a linear classifier, which allows determining in which mode the process was carried out. It is shown that this rule is the basis for identifying an event qualified as a parametric failure, and it can be included in the general structure of the parametric failure function. The parametric failure function constructed for the temperature control system of induction crucible melting makes it possible to ascertain that the control system does not meet the specified requirements for a specific temperature mode of melting. The mechanism of inferencing regarding the occurrence of a parametric failure based on this function is as follows. If the decision rule showed that the object belongs to the “low-temperature mode” class, although the process under these conditions should have been carried out in the high-temperature mode, a parametric failure is recorded. In this case, the numerical value of this function takes the value of “1”, otherwise – “0”. The inferencing mechanism works similarly if, on the basis of the decision rule, it is revealed that the process was carried out in the high-temperature mode, although under these conditions it should have been carried out in the low-temperature mode. Based on the constructed parametric failure function, practical problems related to planning maintenance of the temperature control system integrated into the melting complex or organizational and technical measures aimed at minimizing violations of the melting regulations can be solved


Author(s):  
P.P.K. Smith

Grains of pigeonite, a calcium-poor silicate mineral of the pyroxene group, from the Whin Sill dolerite have been ion-thinned and examined by TEM. The pigeonite is strongly zoned chemically from the composition Wo8En64FS28 in the core to Wo13En34FS53 at the rim. Two phase transformations have occurred during the cooling of this pigeonite:- exsolution of augite, a more calcic pyroxene, and inversion of the pigeonite from the high- temperature C face-centred form to the low-temperature primitive form, with the formation of antiphase boundaries (APB's). Different sequences of these exsolution and inversion reactions, together with different nucleation mechanisms of the augite, have created three distinct microstructures depending on the position in the grain.In the core of the grains small platelets of augite about 0.02μm thick have farmed parallel to the (001) plane (Fig. 1). These are thought to have exsolved by homogeneous nucleation. Subsequently the inversion of the pigeonite has led to the creation of APB's.


2020 ◽  
Vol 10 (10) ◽  
pp. 59-67
Author(s):  
Victor N. ANTIPOV ◽  
◽  
Andrey D. GROZOV ◽  
Anna V. IVANOVA ◽  
◽  
...  

The overall dimensions and mass of wind power units with capacities larger than 10 MW can be improved and their cost can be decreased by developing and constructing superconducting synchronous generators. The article analyzes foreign conceptual designs of superconducting synchronous generators based on different principles: with the use of high- and low-temperature superconductivity, fully superconducting or only with a superconducting excitation system, and with the use of different materials (MgB2, Bi2223, YBCO). A high cost of superconducting materials is the main factor impeding commercial application of superconducting generators. In view of the state of the art in the technology for manufacturing superconductors and their cost, a conclusion is drawn, according to which a synchronous gearless superconducting wind generator with a capacity of 10 MW with the field winding made of a high-temperature superconducting material (MgB2, Bi-2223 or YBCO) with the «ferromagnetic stator — ferromagnetic rotor» topology, with the stator diameter equal to 7—9 m, and with the number of poles equal to 32—40 has prospects for its practical use in the nearest future.


Sign in / Sign up

Export Citation Format

Share Document