Machining processes time calculating tool integrated in computer aided process planning (CAPP) for small and medium enterprises (SMEs)

2011 ◽  
Vol 24 (1) ◽  
pp. 40-52 ◽  
Author(s):  
R. Blanch ◽  
N. Pellicer ◽  
M. L. G.-Romeu ◽  
J. Ciurana
1992 ◽  
Vol 114 (1) ◽  
pp. 31-40 ◽  
Author(s):  
U. P. Korde ◽  
B. C. Bora ◽  
K. A. Stelson ◽  
D. R. Riley

Research on generative computer-aided process planning (CAPP) for turned parts using combined fundamental and heuristic principles is presented. The rationale for the process planning approach is that many preconditions of machining processes can be expressed as a small number of domain principles. The domain is defined by processes and the part description as features for simple turned parts. The motivation is to detect faulty designs early on in the design process. Preliminary designs defined by features are first evaluated using manufacturability rules in a rule-based expert system, developed in LISP. Manufacturability rules are based on feature properties such as accessibility, stability, and critical material thickness. The rules were acquired from design and manufacturing personnel from industry through interviews. Parts that satisfy the manufacturability checks are used to generate all feasible process plans. A search algorithm selects the “best” process plan from the feasible set. Process plans are generated and subsequently optimized using two distinct sets of feasibility and optimality criteria which may be either fundamental or heuristic in nature. The presently incorporated criteria successfully restrict the set of plans to a small number without missing any apparently feasible process plans. Manufacturability evaluation, feasible process plans, and optimal process plans for actual industrial parts have been obtained and compared.


2011 ◽  
Vol 264-265 ◽  
pp. 1551-1556
Author(s):  
Deepak Byotra ◽  
Rajesh Kumar Bhushan

Bulk of power transmitting metal gears of machinery is produced by machining processes from cast, forged or hot rolled blanks. It includes a number of versatile machining operations that use a milling cutter, a multi tooth tool to produce a variety of configurations. The aim of the computer aided process planning (CAPP) is to develop a programme for milling cutting processes. This paper reveals the hybrid approach to computer aided process planning for milling and grinding operations on gear blank, so that the plan can be generated taking into account the availability of machines and the material. The developed computer aided process plan has reduced the set up time and machining time by 40.90 and 30.15 % respectively.


Author(s):  
Xun Xu

Products and their components are designed to perform certain functions. Design specifi- cations ensure the functionality aspects. The task in manufacturing is then to produce the components that meet the design specifications. The components are in turn assembled into the final products. When computers are used to assist the process planning and manufacturing activities, multiple benefits can be had. The related technologies are known as computer-aided process planning and computer-aided manufacturing. Often, they are not separable and are therefore discussed in tandem in this chapter. It should be emphasized that process planning is not only for metal-cutting processes. We need process planning for many other manufacturing processes such as casting, forging, sheet metal forming, compositesz and ceramic fabrication. In this chapter, the basic steps of developing a process plan are explained. There are two approaches to carrying out process planning tasks—manual experience-based method and computer-aided process planning method. The focus is on two computer-aided process planning methods, the variant approach, and generative approach. These discussions on process planning have been limited to machining processes. The topic of computer-aided manufacturing, on the other hand, is discussed with a more general point of view. A fictitious CAM plant is presented and some of the key aspects of CAM in a manufacturing system are discussed. A more specific version of CAM (i.e. computer numerical control) will be covered in Chapters VIII and IX.


2014 ◽  
Vol 598 ◽  
pp. 591-594 ◽  
Author(s):  
Li Yan Zhang

ISO 14649, known as STEP-NC, is new model of data transfer between CAD/CAM systems and CNC machines. In this paper, the modeling based on machining feature is proposed. The machining feature comes from the manufacturing process considering the restriction of machining technology and machining resource. Then the framework for computer aided process planning is presented, where the algorithms of operation planning is studied. The practical example has been provided and results indicate that machining feature based model can integrate with CAPP and STEP-NC seamlessly.


Sign in / Sign up

Export Citation Format

Share Document