A weak individual signature might not allow chick call recognition by parent Stone Curlews Burhinus oedicnemus

Bioacoustics ◽  
2012 ◽  
Vol 22 (1) ◽  
pp. 17-32
Author(s):  
M. Dragonetti ◽  
C. Caccamo ◽  
E. Pollonara ◽  
N. E. Baldaccini ◽  
D. Giunchi
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Talita Fernanda Augusto Ribas ◽  
Julio Cesar Pieczarka ◽  
Darren K. Griffin ◽  
Lucas G. Kiazim ◽  
Cleusa Yoshiko Nagamachi ◽  
...  

Abstract Background Thamnophilidae birds are the result of a monophyletic radiation of insectivorous Passeriformes. They are a diverse group of 225 species and 45 genera and occur in lowlands and lower montane forests of Neotropics. Despite the large degree of diversity seen in this family, just four species of Thamnophilidae have been karyotyped with a diploid number ranging from 76 to 82 chromosomes. The karyotypic relationships within and between Thamnophilidae and another Passeriformes therefore remain poorly understood. Recent studies have identified the occurrence of intrachromosomal rearrangements in Passeriformes using in silico data and molecular cytogenetic tools. These results demonstrate that intrachromosomal rearrangements are more common in birds than previously thought and are likely to contribute to speciation events. With this in mind, we investigate the apparently conserved karyotype of Willisornis vidua, the Xingu Scale-backed Antbird, using a combination of molecular cytogenetic techniques including chromosome painting with probes derived from Gallus gallus (chicken) and Burhinus oedicnemus (stone curlew), combined with Bacterial Artificial Chromosome (BAC) probes derived from the same species. The goal was to investigate the occurrence of rearrangements in an apparently conserved karyotype in order to understand the evolutionary history and taxonomy of this species. In total, 78 BAC probes from the Gallus gallus and Taeniopygia guttata (the Zebra Finch) BAC libraries were tested, of which 40 were derived from Gallus gallus macrochromosomes 1–8, and 38 from microchromosomes 9–28. Results The karyotype is similar to typical Passeriformes karyotypes, with a diploid number of 2n = 80. Our chromosome painting results show that most of the Gallus gallus chromosomes are conserved, except GGA-1, 2 and 4, with some rearrangements identified among macro- and microchromosomes. BAC mapping revealed many intrachromosomal rearrangements, mainly inversions, when comparing Willisornis vidua karyotype with Gallus gallus, and corroborates the fissions revealed by chromosome painting. Conclusions Willisornis vidua presents multiple chromosomal rearrangements despite having a supposed conservative karyotype, demonstrating that our approach using a combination of FISH tools provides a higher resolution than previously obtained by chromosome painting alone. We also show that populations of Willisornis vidua appear conserved from a cytogenetic perspective, despite significant phylogeographic structure.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Melquizedec Luiz Silva Pinheiro ◽  
Cleusa Yoshiko Nagamachi ◽  
Talita Fernanda Augusto Ribas ◽  
Cristovam Guerreiro Diniz ◽  
Patricia Caroline Mary O´Brien ◽  
...  

Abstract Background The Scolopacidae family (Suborder Scolopaci, Charadriiformes) is composed of sandpipers and snipes; these birds are long-distance migrants that show great diversity in their behavior and habitat use. Cytogenetic studies in the Scolopacidae family show the highest diploid numbers for order Charadriiformes. This work analyzes for the first time the karyotype of Actitis macularius by classic cytogenetics and chromosome painting. Results The species has a diploid number of 92, composed mostly of telocentric pairs. This high 2n is greater than the proposed 80 for the avian ancestral putative karyotype (a common feature among Scolopaci), suggesting that fission rearrangements have formed smaller macrochromosomes and microchromosomes. Fluorescence in situ hybridization using Burhinus oedicnemus whole chromosome probes confirmed the fissions in pairs 1, 2, 3, 4 and 6 of macrochromosomes. Conclusion Comparative analysis with other species of Charadriiformes studied by chromosome painting together with the molecular phylogenies for the order allowed us to raise hypotheses about the chromosomal evolution in suborder Scolopaci. From this, we can establish a clear idea of how chromosomal evolution occurred in this suborder.


1998 ◽  
Vol 8 (4) ◽  
pp. 219-224 ◽  
Author(s):  
J. H. Samour ◽  
J. C. Howlett ◽  
C. Silvanose ◽  
T. A. Bailey ◽  
U. Wernery

BMC Zoology ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Changjian Fu ◽  
Atul Kathait ◽  
Guangyi Lu ◽  
Xiang Li ◽  
Feng Li ◽  
...  

Abstract Background Although acoustic communication plays an essential role in the social interactions of Rallidae, our knowledge of how Rallidae encode diverse types of information using simple vocalizations is limited. We recorded and examined the vocalizations of a common coot (Fulica atra) population during the breeding season to test the hypotheses that 1) different call types can be emitted under different behavioral contexts, and 2) variation in the vocal structure of a single call type may be influenced both by behavioral motivations and individual signature. We measured a total of 61 recordings of 30 adults while noting the behavioral activities in which individuals were engaged. We compared several acoustic parameters of the same call type emitted under different behavioral activities to determine how frequency and temporal parameters changed depending on behavioral motivations and individual differences. Results We found that adult common coots had a small vocal repertoire, including 4 types of call, composed of a single syllable that was used during 9 types of behaviors. The 4 calls significantly differed in both frequency and temporal parameters and can be clearly distinguished by discriminant function analysis. Minimum frequency of fundamental frequency (F0min) and duration of syllable (T) contributed the most to acoustic divergence between calls. Call a was the most commonly used (in 8 of the 9 behaviors detected), and maximum frequency of fundamental frequency (F0max) and interval of syllables (TI) contributed the most to variation in call a. Duration of syllable (T) in a single call a can vary with different behavioral motivations after individual vocal signature being controlled. Conclusions These results demonstrate that several call types of a small repertoire, and a single call with function-related changes in the temporal parameter in common coots could potentially indicate various behavioral motivations and individual signature. This study advances our knowledge of how Rallidae use “simple” vocal systems to express diverse motivations and provides new models for future studies on the role of vocalization in avian communication and behavior.


Geophysics ◽  
1987 ◽  
Vol 52 (9) ◽  
pp. 1229-1251 ◽  
Author(s):  
Bill Dragoset ◽  
Neil Hargreaves ◽  
Ken Larner

The signature of an air‐gun array can change over a period of time or even from one shot to the next. If the signature variations are large, then deterministic deconvolution, with an operator designed from a single signature or from an average signature, could produce errors significant enough to affect data interpretation. Possible sources of air‐gun instability include changes in gun positions, firing times, and pressures, gun failures, and scattering from the fluctuating rough ocean surface. If an air‐gun array were perfectly stable, after application of signature deconvolution the residual signatures for a sequence of shots would be identically shaped, broadband, zero‐phase wavelets. In practice, air‐gun instabilities lead to two major defects in band‐ limited residual signatures: the central portion of the wavelet can become asymmetrical, and unsuppressed energy can occur in the residual bubble region. Processing experiments done with synthesized air‐gun array signatures show that of all types of air‐gun instabilities likely to occur, only gun dropouts cause signature variations severe enough to affect data interpretation. Gun dropouts produce unsuppressed residual bubble energy that can show up as phantom events on a stacked section or that can obscure small‐amplitude events following large‐amplitude events. Neither gun dropouts nor any other kind of air‐gun instability has a significant effect on resolution within the seismic band. Since gun dropouts do not happen on a shot‐to‐shot basis and other instabilities are unimportant, there is no practical benefit to be gained by deriving and applying individual signature deconvolution operators for each shot. The influence of gun dropouts can be minimized through other actions taken in acquisition and processing.


2017 ◽  
Vol 7 (9) ◽  
pp. 3087-3099 ◽  
Author(s):  
Paul S. Crump ◽  
Jeff Houlahan
Keyword(s):  

2019 ◽  
Vol 22 (6) ◽  
pp. 1149-1157 ◽  
Author(s):  
Jiangping Yu ◽  
Hailin Lu ◽  
Wei Sun ◽  
Wei Liang ◽  
Haitao Wang ◽  
...  

Abstract Species facing similar selection pressures should recognize heterospecific alarm signals. However, no study has so far examined heterospecific alarm-call recognition in response to parasitism by cuckoos. In this study, we tested whether two sympatric host species of the common cuckoo Cuculus canorus, Oriental reed warbler Acrocephalus orientalis (ORW, main host), and black-browed reed warbler Acrocephalus bistrigiceps (BRW, rare host), could recognize each other’s alarm calls in response to cuckoos. Dummies of common cuckoo (parasite) and Eurasian sparrowhawk Accipiter nisus (predator) were used to induce and record alarm calls of the two warbler species, respectively. In the conspecific alarm-call playback experiments, ORW responded more strongly to cuckoo alarm calls than to sparrowhawk alarm calls, while BRW responded less strongly to cuckoo alarm calls than to sparrowhawk alarm calls. In the heterospecific alarm-call playback experiments, both ORW and BRW responded less strongly to cuckoo alarm calls than sparrowhawk alarm calls. BRW seemed to learn the association between parasite-related alarm calls of the ORW and the cuckoo by observing the process of ORW attacking cuckoos. In contrast, alarm calls of BRW to cuckoos were rarely recorded in most cases. BRW with low parasite pressure still developed recognition of heterospecific parasite-related alarm call. Unintended receivers in the same community should recognize heterospecific alarm calls precisely to extract valuable information.


2009 ◽  
Vol 102 (3) ◽  
pp. 1348-1357 ◽  
Author(s):  
J. D. Triblehorn ◽  
J. Schul

Object recognition is a fundamental function of the auditory system, but the underlying mechanisms are not well understood. Acoustic communication in the Tettigoniid genus Neoconocephalus provides a useful system for studying these mechanisms. We examined the ascending interneuron pathway in three Neoconocephalus species with diverse calls and recognition mechanisms. This pathway processes spectral information and transmits call temporal patterns to the supraesophageal ganglion where the recognition circuits reside. For each species, we describe one local auditory interneuron (ON) and three with ascending projections (AN-1, AN-2, TN-1), which were physiologically and morphologically similar to those described in other Tettigoniids. TN-1 responded only to the beginning of call models. For AN-1, each call model pulse elicited a single action potential in N. robustus and N. bivocatus, whereas every other pulse elicited an action potential in N. triops. Individual pulses did not reliably evoke AN-2 responses in all three species. AN-1 responses were limited to frequencies <20 kHz. AN-1 tuning differed among the three species, reflecting their differences in the dominant frequency of the calls. AN-2 was broadly tuned, and responses increased with intensity in all three species. In behavioral experiments, N. robustus showed greater spectral selectivity than the other two species. Adding the second harmonic to the spectrum of call models suppressed phonotaxis in N. robustus, but not N. triops or N. bivocatus. Adding the second harmonic reduced AN-1 responses in N. robustus but not in the other two species. We discuss the potential function of the ascending neurons for call recognition.


Sign in / Sign up

Export Citation Format

Share Document