scholarly journals Selenium supplementation through Se-rich dietary matrices can upregulate the anti-inflammatory responses in lipopolysaccharide-stimulated murine macrophages

2017 ◽  
Vol 28 (6) ◽  
pp. 1374-1392 ◽  
Author(s):  
Noorpreet Inder kaur Dhanjal ◽  
Siddharth Sharma ◽  
K. Sandeep Prabhu ◽  
N. Tejo Prakash
2015 ◽  
Author(s):  
◽  
Wei Lei

Sutherlandia frutescens (L.) R. Br (Lessertia frutescens) is a medicinal plant traditionally used in southern Africa. It has been used for patients suffering from numerous types of cancer, infectious diseases, and various inflammatory conditions. This study was designed to determine the impact of S. frutescens on the inflammatory response and anti-microbial activities on cell and/or animal models. Aqueous and ethanolic extracts of S. frutescens were made and verified using HPLC. These extracts were used to treat murine macrophages (e.g., RAW 264.7 cells and primary macrophages isolated from mice) to evaluate the impact of S. frutescens on in vitro inflammatory responses. This study found that the aqueous extract and a polysaccharide-enriched fraction from the aqueous extract exhibited an immuno-stimulatory activity on murine macrophages. Treatment with aqueous extract or polysaccharides increased the production of reactive oxygen species (ROS), nitric oxide (NO), and inflammatory cytokines/chemokines via activating the toll-like receptor 4 signaling pathway. On the other hand, the ethanolic extract of S. frutescens dose-dependently decreased the production of ROS, NO, inducible nitric oxide synthase (iNOS), and various inflammatory cytokines and chemokines in murine macrophages co-stimulated with lipopolysaccharide (LPS) and interferon gamma (IFNy). Follow up experiments demonstrated that the anti-inflammatory activity of the ethanolic extract was mediated via reductions in the activation of NF-kB, extracellular-signal-regulated kinase 1/2 (ERK1/2), and signal transducers and activators of transcription 1 (STAT1). RNA sequencing provided more evidences to support the anti-inflammatory activity of the ethanolic extract of S. frutescens. To our surprise, chlorophylls isolated from S. frutescens had a greater effect on the anti-inflammatory of S. frutescens than that of unique compounds (i.e., sutherlandiosides and sutherlandins). To investigate the impact of oral consumption of S. frutescens on in vivo inflammatory responses and anti-microbial activities, mice were fed with AIN-93G based diet with/without containing ground S. frutescens powder or were gavaged with S. frutescens extracts followed by challenge with E. coli or LPS. These experiments found that oral consumption of S. frutescens had limited or no impact on the in vivo inflammatory responses and anti-microbial activities. Overall, this study provide a better understanding on the beneficial therapeutic properties of S. frutescens using in vitro models, however these studies in a laboratory mouse model suggest that consumption of S. frutescens had only a modest impact on host anti-microbial and inflammatory responses to a gram-negative microbial challenge whether intact microbes or bacterial endotoxin (i.e., LPS) was used.


2020 ◽  
Vol 15 (1) ◽  
pp. 1934578X1989976 ◽  
Author(s):  
Al B. Bayazid ◽  
Jae G. Kim ◽  
Seo H. Park ◽  
Beong O. Lim

Mori Cortex Radicis (MCR) is a well-known Korean and Chinese folk medicine with anti-obesity, anti-inflammatory, anti-asthmatic, and hypoglycemic activities. This study was aimed to evaluate the total phenolic and flavonoid contents, as well as intracellular antioxidant and anti-inflammatory effects of water and 70% (v/v) ethanol extracts of MCR. The antioxidant activities of MCR extracts were determined with diphenyl-2-picrylhydrazyl and 2,2′-azinobis[3-ethylbenzothiazoline-6-sulfonic] scavenging activity assays. The suppressive activities of MCR extracts on the production of nitric oxide (NO*) and the expression of cytokines, c-Fos, activated p38-Mitogen-activated protein kinase (MAPK), and Nuclear factor Kappa B (NF-κB) and splenocytes proliferation in lipopolysaccharide-treated macrophages were determined. Furthermore, this study demonstrated the effects of MCR on reactive oxygen species production in murine macrophages. Mori Cortex Radicis restored deoxyribonucleic acid damages at higher concentrations of the extracts and significantly suppressed free radicals and NO* production. In this study, MCR significantly restored inflammatory responses and intracellular antioxidant activities in murine macrophages (RAW 264.7), which anticipated that MCR could be used as a natural anti-inflammatory agent.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Edson K. Ishizuka ◽  
Luciano Ribeiro Filgueiras ◽  
Francisco J. Rios ◽  
Carlos H. Serezani ◽  
Sonia Jancar

2006 ◽  
Vol 345 (3) ◽  
pp. 1215-1223 ◽  
Author(s):  
Jin-Kyung Kim ◽  
Sun-mee Oh ◽  
Hyuck-Se Kwon ◽  
Yang-Seok Oh ◽  
Soon Sung Lim ◽  
...  

2009 ◽  
Vol 32 (4) ◽  
pp. 651-656 ◽  
Author(s):  
Yoon Hee Kim ◽  
Dae Hwan Kim ◽  
Hwan Lim ◽  
Doo-Yeon Baek ◽  
Hyun-Kyung Shin ◽  
...  

2021 ◽  
Vol 22 (2) ◽  
pp. 488
Author(s):  
Young-Su Yi

Inflammation, an innate immune response that prevents cellular damage caused by pathogens, consists of two successive mechanisms, namely priming and triggering. While priming is an inflammation-preparation step, triggering is an inflammation-activation step, and the central feature of triggering is the activation of inflammasomes and intracellular inflammatory protein complexes. Flavonoids are natural phenolic compounds predominantly present in plants, fruits, and vegetables and are known to possess strong anti-inflammatory activities. The anti-inflammatory activity of flavonoids has long been demonstrated, with the main focus on the priming mechanisms, while increasing numbers of recent studies have redirected the research focus on the triggering step, and studies have reported that flavonoids inhibit inflammatory responses and diseases by targeting inflammasome activation. Rheumatic diseases are systemic inflammatory and autoimmune diseases that primarily affect joints and connective tissues, and they are associated with numerous deleterious effects. Here, we discuss the emerging literature on the ameliorative role of flavonoids targeting inflammasome activation in inflammatory rheumatic diseases.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Lu Wang ◽  
Yafei Rao ◽  
Xiali Liu ◽  
Liya Sun ◽  
Jiameng Gong ◽  
...  

Abstract Background Uncontrolled inflammation is a central problem for many respiratory diseases. The development of potent, targeted anti-inflammatory therapies to reduce lung inflammation and re-establish the homeostasis in the respiratory tract is still a challenge. Previously, we developed a unique anti-inflammatory nanodrug, P12 (made of hexapeptides and gold nanoparticles), which can attenuate Toll-like receptor-mediated inflammatory responses in macrophages. However, the effect of the administration route on its therapeutic efficacy and tissue distribution remained to be defined. Results In this study, we systematically compared the effects of three different administration routes [the intratracheal (i.t.), intravenous (i.v.) and intraperitoneal (i.p.)] on the therapeutic activity, biodistribution and pulmonary cell targeting features of P12. Using the LPS-induced ALI mouse model, we found that the local administration route via i.t. instillation was superior in reducing lung inflammation than the other two routes even treated with a lower concentration of P12. Further studies on nanoparticle biodistribution showed that the i.t. administration led to more accumulation of P12 in the lungs but less in the liver and other organs; however, the i.v. and i.p. administration resulted in more nanoparticle accumulation in the liver and lymph nodes, respectively, but less in the lungs. Such a lung favorable distribution was also determined by the unique surface chemistry of P12. Furthermore, the inflammatory condition in the lung could decrease the accumulation of nanoparticles in the lung and liver, while increasing their distribution in the spleen and heart. Interestingly, the i.t. administration route helped the nanoparticles specifically target the lung macrophages, whereas the other two administration routes did not. Conclusion The i.t. administration is better for treating ALI using nanodevices as it enhances the bioavailability and efficacy of the nanodrugs in the target cells of the lung and reduces the potential systematic side effects.


Sign in / Sign up

Export Citation Format

Share Document