Efficient degradation of organic phosphorus in glyphosate wastewater by catalytic wet oxidation using modified activated carbon as a catalyst

2017 ◽  
Vol 39 (6) ◽  
pp. 749-758 ◽  
Author(s):  
Bo Xing ◽  
Honglin Chen ◽  
Xiaoming Zhang
RSC Advances ◽  
2017 ◽  
Vol 7 (16) ◽  
pp. 9754-9763 ◽  
Author(s):  
Bholu Ram Yadav ◽  
Anurag Garg

The present study reports the performance of catalytic wet oxidation (CWO) for the treatment of simulated pulping effluents (with chemical oxygen demand (COD) = 15 000 and 17 000 mg L−1) from large and small scale pulp and paper mills, respectively.


2005 ◽  
Vol 44 (11) ◽  
pp. 3869-3878 ◽  
Author(s):  
Aurora Santos ◽  
Pedro Yustos ◽  
Sara Gomis ◽  
Gema Ruiz ◽  
Felix Garcia-Ochoa

2007 ◽  
Vol 55 (12) ◽  
pp. 37-45
Author(s):  
A. Santos ◽  
S. Rodriguez ◽  
F. Garcia-Ochoa ◽  
P. Yustos

Catalytic abatement of solutions of 1,000 mg/L in phenol, ortho and para nitrophenol and ortho and para cresols was acomplished by using two catalytic systems. Fenton's reagent was used at 50 °C by adding 10 mg/L of ferrous cation and different dosages of H2O2. The mixture was reacting isothermically in a batch way during 3 hours. Catalytic wet oxidation (CWO) was carried out by using a commercial Activated Carbon, Industrial React FE01606A, CWO runs were carried out in a fixed bed reactor (FBR) with concurrent upflow. Temperature and oxygen pressure of the reactor were set to 160 °C and 16 bar, respectively. While phenols are quicky oxidised by the Fenton reagent higher mineralisation was obtained in the CWO process.


2012 ◽  
Vol 11 (8) ◽  
pp. 1433-1438 ◽  
Author(s):  
Jinren Ni ◽  
Guangzhi Zhang ◽  
Hao Hu ◽  
Weiling Sun ◽  
Bin Zhao ◽  
...  

1998 ◽  
Vol 63 (11) ◽  
pp. 1938-1944 ◽  
Author(s):  
Vratislav Tukač ◽  
Jiří Vokál ◽  
Jiří Hanika

Catalytic activity of CuO-supported catalyst in phenol oxidation, and the influence of reaction conditions, viz. temperature (125-170 °C), oxygen partial pressure (1-7 MPa) and liquid feed (30-760 ml h-1), in the continuous operation using 17.9 mm i.d. trickle-bed reactor is presented. The hydrodynamic impact on the three-phase trickle-bed reactor performance in an environmental application of catalytic wet oxidation was also investigated. The results of trickle-bed operation were strongly influenced by wetting efficiency. An insufficient catalyst wetting can be to compensated by filling the catalyst bed voids by fine glass spheres. In the case of the gas transfer limited reaction, a better wetting of the catalyst can lead to worse reactor performance due to lower reaction rates.


2002 ◽  
Vol 41 (5) ◽  
pp. 1166-1170 ◽  
Author(s):  
Sharon Eyer ◽  
Suresh Bhargava ◽  
James Tardio ◽  
Deepak B. Akolekar

Sign in / Sign up

Export Citation Format

Share Document