Impact of mechanical street cleaning and rainfall events on the quantity and heavy metals load of street sediments

2010 ◽  
Vol 31 (11) ◽  
pp. 1255-1262 ◽  
Author(s):  
P.S. Calabrò
2021 ◽  
Author(s):  
Karen L. Rojas-Gómez ◽  
Jakob Benisch ◽  
Julian D. Reyes-Silva ◽  
Renato Mariano ◽  
Soohyun Yang ◽  
...  

<p>During heavy rainfall events, the large amounts of generated runoff in urban areas mobilise particulate matter from different surfaces. These particles have attached other contaminants such as heavy metals, polycyclic aromatic hydrocarbons and, faecal microorganisms. In urbanised areas, particle-bound contaminants (PBCs) may reach rivers through surface runoff, combined sewer overflows or storm water discharges. This may affect the water quality of receiving water bodies and creates health risks to humans and ecosystems. Due to the spatial variability of PBCs, associated to different land uses and pollution sources, the quantification and characterisation of contaminant pathways remain a challenge. Despite high investments, the implemented management alternatives to improve river water quality are still inefficient due to late identification of pressures and lack of a real paradigm shift towards holistic approaches. Therefore, it is necessary to better understand and describe the main factors controlling PBCs pathways in urban areas. This is expected to facilitate the selection of appropriate technologies and strategies to reduce the impact of urban discharges on receiving water bodies.</p><p>In this context, the aim of this study is to evaluate the influence of spatial and temporal variability of sediments and PBCs sources on river water quality in an urbanised catchment, considering land-use distribution within the sewersheds. This is expected to provide a better understanding of the relationship between drivers of relevant PBCs and the response of the urban water system under dynamic conditions (i.e. variable sediment load, urban runoff, storm water discharge and river flow). </p><p>Data for this study is obtained from an integrated monitoring network in a small watershed (Lockwitzbach) located in Dresden, Germany. This urban observatory consists of four water quality monitoring stations within the stream and in the sewer network. High-resolution (1min) discharge and turbidity data are collected. This allows to understand the dynamic transport mechanisms of sediments in the catchment, providing insights in complex runoff and discharge processes.</p><p>Integrated simulation of sediments and PBCs (i.e. heavy metals) is done by using EPA SWMM to evaluate surface build-up and wash-off. Additionally, the impact of sedimentation, accumulation and re-suspension of sediments and heavy metals within the sewer network and river are analysed using a simplified block developed in Simba#. Calibration and validation of the integrated model was done using online monitoring data and water samples taken during the period 2018-2020. Turbidity was used as a proxy for total suspended solids and PBCs. We identified and prioritised urban areas that are hotspots for high sediment and PBCs loads. Those represent potential locations for an optimal control and reduction of water pollution strategies. Results suggest that integrated simulation is an effective approach to analyse transport mechanisms and pathways of sediments and PBCs within urbanised catchments. Furthermore, high-resolution discharge and turbidity data are especially useful to represent the wash-off of contaminants associated to the first flush process during rainfall events.</p>


2005 ◽  
Vol 52 (3) ◽  
pp. 53-62 ◽  
Author(s):  
M. Kafi-Benyahia ◽  
M.G. Gromaire ◽  
G. Chebbo

An experimental on-site observatory of urban pollutant loads in combined sewers was created in the centre of Paris to quantify and characterise the dry and wet weather flow in relation to spatial scale. Eight rainfall events were studied from April 2003 to May 2004. Samples were analysed for suspended solids, organic matter, nitrogen and heavy metals. Results confirm the extent of wet weather pollution. They have shown the relative homogeneity of SS and organic matter characteristics from one urban catchment area to another. Two groups of heavy metals were identified. The first one concerns Cu, which has a higher concentration in wet weather flow (WWF) than in dry weather flow (DWF), and runoff. The second includes Cd, Pb and Zn, where higher concentrations were measured in urban runoff than in WWF and DWF. A first evaluation of contribution of wastewater, urban runoff and sewer deposit erosion sources to wet weather pollution was established and has highlighted the contribution of wastewater and sewer deposits to this pollution. However, it has shown that sewer deposit erosion remains an important source of wet weather pollution at different spatial scales.


Author(s):  
Randall W. Smith ◽  
John Dash

The structure of the air-water interface forms a boundary layer that involves biological ,chemical geological and physical processes in its formation. Freshwater and sea surface microlayers form at the air-water interface and include a diverse assemblage of organic matter, detritus, microorganisms, plankton and heavy metals. The sampling of microlayers and the examination of components is presently a significant area of study because of the input of anthropogenic materials and their accumulation at the air-water interface. The neustonic organisms present in this environment may be sensitive to the toxic components of these inputs. Hardy reports that over 20 different methods have been developed for sampling of microlayers, primarily for bulk chemical analysis. We report here the examination of microlayer films for the documentation of structure and composition.Baier and Gucinski reported the use of Langmuir-Blogett films obtained on germanium prisms for infrared spectroscopic analysis (IR-ATR) of components. The sampling of microlayers has been done by collecting fi1ms on glass plates and teflon drums, We found that microlayers could be collected on 11 mm glass cover slips by pulling a Langmuir-Blogett film from a surface microlayer. Comparative collections were made on methylcel1ulose filter pads. The films could be air-dried or preserved in Lugol's Iodine Several slicks or surface films were sampled in September, 1987 in Chesapeake Bay, Maryland and in August, 1988 in Sequim Bay, Washington, For glass coverslips the films were air-dried, mounted on SEM pegs, ringed with colloidal silver, and sputter coated with Au-Pd, The Langmuir-Blogett film technique maintained the structure of the microlayer intact for examination, SEM observation and EDS analysis were then used to determine organisms and relative concentrations of heavy metals, using a Link AN 10000 EDS system with an ISI SS40 SEM unit. Typical heavy microlayer films are shown in Figure 3.


1993 ◽  
Vol 88 (3) ◽  
pp. 522-529 ◽  
Author(s):  
Udo W. Stephan ◽  
Gunter Scholz
Keyword(s):  

2011 ◽  
Author(s):  
Parker Woody ◽  
Michael Zhang ◽  
Craig Pulsipher ◽  
Dawson Hedges ◽  
Bruce Brown

Sign in / Sign up

Export Citation Format

Share Document