Force production and EMG activity of neck muscles in adolescent headache

2008 ◽  
Vol 30 (3) ◽  
pp. 231-239 ◽  
Author(s):  
Airi Oksanen ◽  
Tapani Pöyhönen ◽  
Jari J. Ylinen ◽  
Liisa Metsähonkala ◽  
Pirjo Anttila ◽  
...  
1995 ◽  
Vol 5 (2) ◽  
pp. 61-67 ◽  
Author(s):  
Margaret A. Rice ◽  
J. Gregory Bennett ◽  
Robert O. Ruhling

2002 ◽  
Vol 88 (4) ◽  
pp. 2000-2018 ◽  
Author(s):  
Brian D. Corneil ◽  
Etienne Olivier ◽  
Douglas P. Munoz

We report neck muscle activity and head movements evoked by electrical stimulation of the superior colliculus (SC) in head-unrestrained monkeys. Recording neck electromyography (EMG) circumvents complications arising from the head's inertia and the kinetics of muscle force generation and allows precise assessment of the neuromuscular drive to the head plant. This study served two main purposes. First, we sought to test the predictions made in the companion paper of a parallel drive from the SC onto neck muscles. Low-current, long-duration stimulation evoked both neck EMG responses and head movements either without or prior to gaze shifts, testifying to a SC drive to neck muscles that is independent of gaze-shift initiation. However, gaze-shift initiation was linked to a transient additional EMG response and head acceleration, confirming the presence of a SC drive to neck muscles that is dependent on gaze-shift initiation. We forward a conceptual neural architecture and suggest that this parallel drive provides the oculomotor system with the flexibility to orient the eyes and head independently or together, depending on the behavioral context. Second, we compared the EMG responses evoked by SC stimulation to those that accompanied volitional head movements. We found characteristic features in the underlying pattern of evoked neck EMG that were not observed during volitional head movements in spite of the seemingly natural kinematics of evoked head movements. These features included reciprocal patterning of EMG activity on the agonist and antagonist muscles during stimulation, a poststimulation increase in the activity of antagonist muscles, and synchronously evoked responses on agonist and antagonist muscles regardless of initial horizontal head position. These results demonstrate that the electrically evoked SC drive to the head cannot be considered as a neural replicate of the SC drive during volitional head movements and place important new constraints on the interpretation of electrically evoked head movements.


2017 ◽  
Vol 29 (1) ◽  
pp. 109-115 ◽  
Author(s):  
Jonathan C. Reid ◽  
Rebecca M. Greene ◽  
Nehara Herat ◽  
Daniel D. Hodgson ◽  
Israel Halperin ◽  
...  

Purpose:Contrary to adult force reserve strategies, it is not known whether adolescent females with less experience performing maximal voluntary contractions (MVC) have specific responses to a known or unknown fatigue endpoint. Methods:Using a counterbalanced random crossover design, fourteen inexperienced female adolescents completed three elbow flexor (EF) fatiguing protocols. Participants were randomly assigned to a control (informed they would perform 12 MVCs), unknown (not informed of the number of MVCs to be completed, but stopped after 12) or deception condition (instructed to complete 6 MVCs, however, after the sixth repetition performed another 6 MVCs). Before and during the interventions, EF impulse, force, and biceps brachii (BB) and triceps brachii (TB) electromyography (EMG) activity were recorded. Results: Participants exhibited decreases in impulse (10.9%; p < .05), force (7.5%; p = .001), BB (16.2%; p < .05) and TB (12.9%; p < .05) EMG activity between the pretest and the first repetition of all protocols. Knowledge of endpoint, or lack of it, did not change measures with the repeated MVCs. When informed about the final repetition, force remained depressed suggesting no physiological reserve. Conclusion:Adolescent females exhibited an anticipatory response to the task of performing repeated MVCs. A lack of change with knowledge of endpoint indicates that those lacking in MVC experience do not employ the same pacing strategies as in previous studies of participants with MVC experience.


Author(s):  
Suman Chowdhury ◽  
Yu Zhou ◽  
Curran P. Reddy ◽  
Bocheng Wan ◽  
Xudong Zhang

Given the contribution of sustained neck exertion in non-neutral postures to the prevalence of neck pain in the workplace, the sex-specific fatigability rates of neck muscles were investigated using an integrated analysis of electromyography (EMG) median frequency (MF) and EMG Amplitude-Force ratio. The EMG MF and EMG Amplitude-Force ratio data of 18 males and 19 females were analyzed using piecewise linear regression models. The results showed that the time- and sex-specific fatigability rates are task- and muscle-dependent, with tasks relying primarily on the smaller muscles in the force production incurred a more significant amount of muscle fatigue for males than females.


2008 ◽  
Vol 100 (3) ◽  
pp. 1677-1685 ◽  
Author(s):  
Farshad Farshadmanesh ◽  
Pengfei Chang ◽  
Hongying Wang ◽  
Xiaogang Yan ◽  
Brian D. Corneil ◽  
...  

The interstitial nucleus of Cajal (INC) is thought to control torsional and vertical head posture. Unilateral microstimulation of the INC evokes torsional head rotation to positions that are maintained until stimulation offset. Unilateral INC inactivation evokes head position-holding deficits with the head tilted in the opposite direction. However, the underlying muscle synergies for these opposite behavioral effects are unknown. Here, we examined neck muscle activity in head-unrestrained monkeys before and during stimulation (50 μA, 200 ms, 300 Hz) and inactivation (injection of 0.3 μl of 0.05% muscimol) of the same INC sites. Three-dimensional eye and head movements were recorded simultaneously with electromyographic (EMG) activity in six bilateral neck muscles: sternocleidomastoid (SCM), splenius capitis (SP), rectus capitis posterior major (RCPmaj.), occipital capitis inferior (OCI), complexus (COM), and biventer cervicis (BC). INC stimulation evoked a phasic, short-latency (∼5–10 ms) facilitation and later (∼100–200 ms) a more tonic facilitation in the activity of ipsi-SCM, ipsi-SP, ipsi-COM, ipsi-BC, contra-RCPmaj., and contra-OCI. Unilateral INC inactivation led to an increase in the activity of contra-SCM, ipsi-SP, ipsi-RCPmaj., and ipsi-OCI and a decrease in the activity of contra-RCPmaj. and contra-OCI. Thus the influence of INC stimulation and inactivation were opposite on some muscles (i.e., contra-OCI and contra-RCPmaj.), but the comparative influences on other neck muscles were more variable. These results show that the relationship between the neck muscle responses during INC stimulation and inactivation is much more complex than the relationship between the overt behaviors.


1995 ◽  
Vol 80 (3) ◽  
pp. 963-977 ◽  
Author(s):  
Gerald Leisman ◽  
Robert Zenhausern ◽  
Avery Ferentz ◽  
Tesfaye Tefera ◽  
Alexander Zemcov

The study investigated the effects of fatigue and task repetition on the relationship between integrated electromyogram and force output during subjective clinical testing of upper extremity muscles. Muscles were studied under two conditions differing in the nature and duration of constant force production (SHORT-F) and (LONG-F). The findings included a significant relationship between force output and integrated EMG, a significant increase in efficiency of muscle activity with task repetition, and significant difference between Force/integrated EMG ratios for muscles labeled “Strong” and “Weak” in the LONG-F condition. This supports Smith's 1974 notion that practice results in increased muscular efficiency. With fatigue, integrated EMG activity increased strongly and functional (force) output of the muscle remained stable or decreased. Fatigue results in a less efficient muscle process. Muscles subjectively testing “Weak” or “Strong” yield effects significantly different from fatigue.


2006 ◽  
Vol 16 (3) ◽  
pp. 127-136
Author(s):  
M. Magnusson ◽  
G. Andersson ◽  
S. Gomez ◽  
R. Johansson ◽  
A. Mårtensson ◽  
...  

A previous study showed that vibratory stimulation of neck muscles in humans induced short-latency electromyographic (EMG) activation of lower leg muscles, producing postural reactions at the feet. These findings indicated that cervical proprioception contributes to stabilization of stance through rapidly integrated pathways. However, as vibration may excite both proprioceptive and vestibular afferents, and because of the proximity of neck muscles to the vestibular apparatus, neck muscle vibration could also have activated the vestibular system thereby contributing to the effect observed. To investigate any possible contribution of vestibular stimulation, vibratory stimuli were applied bilaterally and separately to the splenius muscles of the neck and the planum mastoideum overlying the vestibular organs. Ten normal subjects, with eyes closed, were exposed to vibratory stimulation of two different amplitudes and frequencies. Responses were assessed by EMG activity recorded from tibialis anterior and gastrocnemius muscles of both legs and by changes in center of pressure as measured by a force platform. Results indicated that vibration induced reproducible EMG and postural responses in the anteroposterior direction, particularly on cessation of vibration. EMG and postural responses were considerably lower and less consistent with mastoid vibration compared with neck muscles vibration. Previous reports suggest that vibratory stimulation could propagate to the vestibular organs and generate a vestibular-induced postural activation. However, our findings indicate that cervical muscles afferents play a dominant role over vestibular afferents when vibration is directed towards the neck muscles.


2010 ◽  
Vol 104 (2) ◽  
pp. 1141-1154 ◽  
Author(s):  
Brach Poston ◽  
Alessander Danna-Dos Santos ◽  
Mark Jesunathadas ◽  
Thomas M. Hamm ◽  
Marco Santello

The ability to modulate digit forces during grasping relies on the coordination of multiple hand muscles. Because many muscles innervate each digit, the CNS can potentially choose from a large number of muscle coordination patterns to generate a given digit force. Studies of single-digit force production tasks have revealed that the electromyographic (EMG) activity scales uniformly across all muscles as a function of digit force. However, the extent to which this finding applies to the coordination of forces across multiple digits is unknown. We addressed this question by asking subjects ( n = 8) to exert isometric forces using a three-digit grip (thumb, index, and middle fingers) that allowed for the quantification of hand muscle coordination within and across digits as a function of grasp force (5, 20, 40, 60, and 80% maximal voluntary force). We recorded EMG from 12 muscles (6 extrinsic and 6 intrinsic) of the three digits. Hand muscle coordination patterns were quantified in the amplitude and frequency domains (EMG–EMG coherence). EMG amplitude scaled uniformly across all hand muscles as a function of grasp force (muscle × force interaction: P = 0.997; cosines of angle between muscle activation pattern vector pairs: 0.897–0.997). Similarly, EMG–EMG coherence was not significantly affected by force ( P = 0.324). However, coherence was stronger across extrinsic than that across intrinsic muscle pairs ( P = 0.0039). These findings indicate that the distribution of neural drive to multiple hand muscles is force independent and may reflect the anatomical properties or functional roles of hand muscle groups.


1992 ◽  
Vol 10 (3) ◽  
pp. 217-228 ◽  
Author(s):  
A. Nummela ◽  
T. Vuorimaa ◽  
H. Rusko

Sign in / Sign up

Export Citation Format

Share Document