Population development of root‐knot nematode(Meloidogyne javanica)and tomato yield as influenced by summer ploughings

1987 ◽  
Vol 33 (2) ◽  
pp. 122-124
Author(s):  
R. K. Jain ◽  
D. S. Bhatti
Nematology ◽  
2002 ◽  
Vol 4 (1) ◽  
pp. 65-71 ◽  
Author(s):  
Yuji Oka ◽  
Shimon Pivonia

AbstractThe nematicidal activities of ammonia-releasing and ammonium compounds were tested against the root-knot nematode Meloidogyne javanica in pot, microplot and field experiments. Among ten compounds tested, NH4OH, (NH4)2HPO4 and NH4HCO3 showed greatest nematicidal activity at concentrations of 300 mg N/kg of NH4 or NH2 in pots. NH4OH was found to be the most nematicidal of these compounds. Enclosure of pots containing NH4OH-treated soils in plastic bags reduced the concentration of NH4OH needed to kill the nematodes from 200 mg N/kg in open pots to only 75 mg N/kg. In a microplot experiment, treatment of nematode-infested soil with NH4OH at 70 mg N/kg reduced the root-galling index to 0. In one field experiment, the nematicidal efficacy of NH4OH on tomato plants at doses of 1000 and 2000 kg N/ha was equivalent to those of Telopic C35® or metham sodium in combination with cadusafos. In another field experiment, NH4OH at 500 and 1000 kg N/ha increased tomato yield and at 1000 kg N/ha reduced the galling index, compared with untreated controls. The results suggest that NH4OH may serve as a nematicide in alkaline sandy soils.


Author(s):  
Paula Juliana Grotto Débia ◽  
Beatriz Cervejeira Bolanho ◽  
Claudia Regina Dias-Arieira

Abstract Background The root-knot nematode Meloidogyne javanica can infect beetroots, causing extensive damage to this food crop. As chemical and genetic control tactics have shown limited efficacy, new strategies are needed to improve the integrated management of this parasite. This study assessed the influence of potential defence elicitors and M. javanica infection on the mineral composition of beetroot. Plants were treated with acibenzolar-S-methyl (ASM), citrus biomass, or a mannanoligosaccharide-based product (MOS) and inoculated with 1000 eggs and second-stage juveniles of M. javanica. At 60 days after inoculation, beetroot plants were harvested and evaluated for nematode population density, vegetative growth, and mineral content. Results All potential elicitors reduced nematode population density in beetroots (p ≤ 0.10) and improved the vegetative parameters of inoculated plants (p ≤ 0.05), except shoot fresh weight. Some minerals were found to be negatively affected by treatments, particularly calcium, whose levels were consistently lower in treated plants. On the other hand, M. javanica inoculation increased magnesium, iron, manganese, zinc, and copper contents in beetroots. However, the latter mineral (Cu content) of inoculated plants was positively influenced by MOS and ASM. Conclusion Potential elicitor treatments did not improve the mineral composition of beetroot, but were effective in reducing nematode population density. Plants inoculated with M. javanica had higher mineral levels. However, gall formation decreases the commercial value of the crop and might render it unsuitable for commercialisation. M. javanica-infected beetroots may be used for nutrient extraction or sold to food processing industries.


Nematology ◽  
2021 ◽  
pp. 1-8
Author(s):  
Fabíola de J. Silva ◽  
Regina C.F. Ribeiro ◽  
Adelica A. Xavier ◽  
Vanessa A. Gomes ◽  
Paulo V.M. Pacheco ◽  
...  

Summary Root-knot nematodes (Meloidogyne spp.) are responsible for various significant crop losses, which require taking integrated control measures. The present study aimed to identify a possible sustainable approach to the management of Meloidogyne javanica in vegetable crops using an organic compound based on pequi (Caryocar brasiliense) fruit residues. A pot experiment was conducted using cultivars of tomato and lettuce susceptible to M. javanica, with three amendments including inorganic fertiliser, cattle manure and five doses of organic compost with pequi residues. All treatments were inoculated with second-stage juveniles of M. javanica to simulate the root-knot nematode disease in field conditions. Increasing doses of organic compost with pequi residues from 5 kg m−3 to 30 kg m−3 promoted a significant decrease in the nematode population in both cultures evaluated. Organic compost (30 kg m−3) reduced the numbers of galls and eggs of M. javanica by 41.6 and 46.5% in tomato roots, and by 80.3 and 59.2% in lettuce roots, respectively, compared with non-treated control. Organic compost also increased crop development considerably. In general, there was a 43.0% increase in plant development compared to non-treated control. Hence, organic compost of pequi residues could be an alternative to toxic chemical nematicides and recommended as eco-friendly management of M. javanica in vegetable crops.


2008 ◽  
Vol 3 (1) ◽  
pp. 87 ◽  
Author(s):  
Modika R. Perera ◽  
Ruben D. Flores-Vargas ◽  
Michael G. K. Jones

Sign in / Sign up

Export Citation Format

Share Document