Cosmo-SkyMed X-band SAR data for classification of ice-free areas and glacier facies on Potter Peninsula, King George Island Antarctica

2015 ◽  
Vol 31 (7) ◽  
pp. 803-812 ◽  
Author(s):  
André Medeiros de Andrade ◽  
Jorge Arigony-Neto ◽  
Ulisses Franz Bremer ◽  
Roberto Ferreira Machado Michel ◽  
Alice César Fassoni-Andrade ◽  
...  
2021 ◽  
Vol 13 (3) ◽  
pp. 360
Author(s):  
Wensheng Wang ◽  
Martin Gade ◽  
Kerstin Stelzer ◽  
Jörn Kohlus ◽  
Xinyu Zhao ◽  
...  

We developed an extension of a previously proposed classification scheme that is based upon Freeman–Durden and Cloude–Pottier decompositions of polarimetric Synthetic Aperture Radar (SAR) data, along with a Double-Bounce Eigenvalue Relative Difference (DERD) parameter, and a Random Forest (RF) classifier. The extension was done, firstly, by using dual-copolarization SAR data acquired at shorter wavelengths (C- and X-band, in addition to the previously used L-band) and, secondly, by adding indicators derived from the (polarimetric) Kennaugh elements. The performance of the newly developed classification scheme, herein abbreviated as FCDK-RF, was tested using SAR data of exposed intertidal flats. We demonstrate that the FCDK-RF scheme is capable of distinguishing between different sediment types, namely mud and sand, at high spatial accuracies. Moreover, the classification scheme shows good potential in the detection of bivalve beds on the exposed flats. Our results show that the developed FCDK-RF scheme can be applied for the mapping of sediments and habitats in the Wadden Sea on the German North Sea coast using multi-frequency and multi-polarization SAR from ALOS-2 (L-band), Radarsat-2 (C-band) and TerraSAR-X (X-band).


2002 ◽  
Vol 6 (3) ◽  
pp. 217-232 ◽  
Author(s):  
Martin Hellmann ◽  
Gunther Jäger

2016 ◽  
Vol 4 (3) ◽  
Author(s):  
Gisela Parmeciano Di Noto ◽  
Susana C. Vázquez ◽  
Walter P. MacCormack ◽  
Andrés Iriarte ◽  
Cecilia Quiroga

We present the draft genome of Shewanella frigidimarina Ag06-30, a marine bacterium from King George Island, Antarctica, which encodes the carbapenemase SFP-1. The assembly contains 4,799,218 bp (G+C content 41.24%). This strain harbors several mobile genetic elements that provide insight into lateral gene transfer and bacterial plasticity and evolution.


Solid Earth ◽  
2015 ◽  
Vol 6 (2) ◽  
pp. 583-594 ◽  
Author(s):  
E. L. Poelking ◽  
C. E. R. Schaefer ◽  
E. I. Fernandes Filho ◽  
A. M. de Andrade ◽  
A. A. Spielmann

Abstract. Integrated studies on the interplay between soils, periglacial geomorphology and plant communities are crucial for the understanding of climate change effects on terrestrial ecosystems of maritime Antarctica, one of the most sensitive areas to global warming. Knowledge on physical environmental factors that influence plant communities can greatly benefit studies on the monitoring of climate change in maritime Antarctica, where new ice-free areas are being constantly exposed, allowing plant growth and organic carbon inputs. The relationship between topography, plant communities and soils was investigated on Potter Peninsula, King George Island, maritime Antarctica. We mapped the occurrence and distribution of plant communities and identified soil–landform–vegetation relationships. The vegetation map was obtained by classification of a QuickBird image, coupled with detailed landform and characterization of 18 soil profiles. The sub-formations were identified and classified, and we also determined the total elemental composition of lichens, mosses and grasses. Plant communities on Potter Peninsula occupy 23% of the ice-free area, at different landscape positions, showing decreasing diversity and biomass from the coastal zone to inland areas where sub-desert conditions prevail. There is a clear dependency between landform and vegetated soils. Soils that have greater moisture or are poorly drained, and with acid to neutral pH, are favourable for moss sub-formations. Saline, organic-matter-rich ornithogenic soils of former penguin rookeries have greater biomass and diversity, with mixed associations of mosses and grasses, while stable felsenmeers and flat rocky cryoplanation surfaces are the preferred sites for Usnea and Himantormia lugubris lichens at the highest surface. Lichens sub-formations cover the largest vegetated area, showing varying associations with mosses.


Author(s):  
Azza Gorrab ◽  
Mehrez Zribi ◽  
Nicolas Baghdadi ◽  
Bernard Mougenot ◽  
Zohra Lili Chabaane

Sign in / Sign up

Export Citation Format

Share Document