A Method on Land Cover Classification by Combining Unsupervised Algorithm and Training Data

1999 ◽  
Vol 14 (4) ◽  
pp. 15-20 ◽  
Author(s):  
Chen Xiuwan ◽  
Hu Heping ◽  
Ryutaro Tateishi ◽  
Chung-Hyun Ahn
2019 ◽  
Vol 11 (12) ◽  
pp. 1461 ◽  
Author(s):  
Husam A. H. Al-Najjar ◽  
Bahareh Kalantar ◽  
Biswajeet Pradhan ◽  
Vahideh Saeidi ◽  
Alfian Abdul Halin ◽  
...  

In recent years, remote sensing researchers have investigated the use of different modalities (or combinations of modalities) for classification tasks. Such modalities can be extracted via a diverse range of sensors and images. Currently, there are no (or only a few) studies that have been done to increase the land cover classification accuracy via unmanned aerial vehicle (UAV)–digital surface model (DSM) fused datasets. Therefore, this study looks at improving the accuracy of these datasets by exploiting convolutional neural networks (CNNs). In this work, we focus on the fusion of DSM and UAV images for land use/land cover mapping via classification into seven classes: bare land, buildings, dense vegetation/trees, grassland, paved roads, shadows, and water bodies. Specifically, we investigated the effectiveness of the two datasets with the aim of inspecting whether the fused DSM yields remarkable outcomes for land cover classification. The datasets were: (i) only orthomosaic image data (Red, Green and Blue channel data), and (ii) a fusion of the orthomosaic image and DSM data, where the final classification was performed using a CNN. CNN, as a classification method, is promising due to hierarchical learning structure, regulating and weight sharing with respect to training data, generalization, optimization and parameters reduction, automatic feature extraction and robust discrimination ability with high performance. The experimental results show that a CNN trained on the fused dataset obtains better results with Kappa index of ~0.98, an average accuracy of 0.97 and final overall accuracy of 0.98. Comparing accuracies between the CNN with DSM result and the CNN without DSM result for the overall accuracy, average accuracy and Kappa index revealed an improvement of 1.2%, 1.8% and 1.5%, respectively. Accordingly, adding the heights of features such as buildings and trees improved the differentiation between vegetation specifically where plants were dense.


2020 ◽  
Vol 12 (18) ◽  
pp. 3091
Author(s):  
Shuai Xie ◽  
Liangyun Liu ◽  
Jiangning Yang

Percentile features derived from Landsat time-series data are widely adopted in land-cover classification. However, the temporal distribution of Landsat valid observations is highly uneven across different pixels due to the gaps resulting from clouds, cloud shadows, snow, and the scan line corrector (SLC)-off problem. In addition, when applying percentile features, land-cover change in time-series data is usually not considered. In this paper, an improved percentile called the time-series model (TSM)-adjusted percentile is proposed for land-cover classification based on Landsat data. The Landsat data were first modeled using three different time-series models, and the land-cover changes were continuously monitored using the continuous change detection (CCD) algorithm. The TSM-adjusted percentiles for stable pixels were then derived from the synthetic time-series data without gaps. Finally, the TSM-adjusted percentiles were used for generating supervised random forest classifications. The proposed methods were implemented on Landsat time-series data of three study areas. The classification results were compared with those obtained using the original percentiles derived from the original time-series data with gaps. The results show that the land-cover classifications obtained using the proposed TSM-adjusted percentiles have significantly higher overall accuracies than those obtained using the original percentiles. The proposed method was more effective for forest types with obvious phenological characteristics and with fewer valid observations. In addition, it was also robust to the training data sampling strategy. Overall, the methods proposed in this work can provide accurate characterization of land cover and improve the overall classification accuracy based on such metrics. The findings are promising for percentile-based land cover classification using Landsat time series data, especially in the areas with frequent cloud coverage.


Author(s):  
M. Zhou ◽  
C. R. Li ◽  
L. Ma ◽  
H. C. Guan

In this study, a land cover classification method based on multi-class Support Vector Machines (SVM) is presented to predict the types of land cover in Miyun area. The obtained backscattered full-waveforms were processed following a workflow of waveform pre-processing, waveform decomposition and feature extraction. The extracted features, which consist of distance, intensity, Full Width at Half Maximum (FWHM) and back scattering cross-section, were corrected and used as attributes for training data to generate the SVM prediction model. The SVM prediction model was applied to predict the types of land cover in Miyun area as ground, trees, buildings and farmland. The classification results of these four types of land covers were obtained based on the ground truth information according to the CCD image data of Miyun area. It showed that the proposed classification algorithm achieved an overall classification accuracy of 90.63%. In order to better explain the SVM classification results, the classification results of SVM method were compared with that of Artificial Neural Networks (ANNs) method and it showed that SVM method could achieve better classification results.


Author(s):  
Y. Ishii ◽  
K. Iwao ◽  
T. Kinoshita

<p><strong>Abstract.</strong> This paper aims to clarify the meaning of the membership which is produced as by-products of land cover classification by Grade-added rough set (GRS). A new land cover classification method by using GRS was developed. The classification scheme of GRS which calculates membership (degree of grade) for each class is similar to those of MLC and SVM. But there are two things that are not clear. One is a meaning of the membership of GRS and the other is a reason why the larger membership in GRS employed works well. In this study, aerial images were used to visualize the relation of membership between GRS and existing classifiers, MLC and SVM. Furthermore, a model experiment in two-dimensional feature space was conducted. From these experiments, it was found that the meaning of degree of grade is a distance from a nearest training data of other class. That is, the meaning of membership of GRS is similar to that of SVM, because SVM also calculates a distance from boundary line which is determined by support vectors, while the meaning of membership of MLC is a distance from a centroid of own class. Also it was found that what the distance from the closest other class is given as the degree of grade implies that the higher the grade, the higher the certainty. In this research we could clarify some of the features of land cover classification using GRS.</p>


Sign in / Sign up

Export Citation Format

Share Document