scholarly journals CHARACTERISTICS OF THE DEGREE OF GRADE IN GRADE-ADDED ROUGH SET FOR LAND COVER CLASSIFICATION

Author(s):  
Y. Ishii ◽  
K. Iwao ◽  
T. Kinoshita

<p><strong>Abstract.</strong> This paper aims to clarify the meaning of the membership which is produced as by-products of land cover classification by Grade-added rough set (GRS). A new land cover classification method by using GRS was developed. The classification scheme of GRS which calculates membership (degree of grade) for each class is similar to those of MLC and SVM. But there are two things that are not clear. One is a meaning of the membership of GRS and the other is a reason why the larger membership in GRS employed works well. In this study, aerial images were used to visualize the relation of membership between GRS and existing classifiers, MLC and SVM. Furthermore, a model experiment in two-dimensional feature space was conducted. From these experiments, it was found that the meaning of degree of grade is a distance from a nearest training data of other class. That is, the meaning of membership of GRS is similar to that of SVM, because SVM also calculates a distance from boundary line which is determined by support vectors, while the meaning of membership of MLC is a distance from a centroid of own class. Also it was found that what the distance from the closest other class is given as the degree of grade implies that the higher the grade, the higher the certainty. In this research we could clarify some of the features of land cover classification using GRS.</p>

Author(s):  
M. Voelsen ◽  
D. Lobo Torres ◽  
R. Q. Feitosa ◽  
F. Rottensteiner ◽  
C. Heipke

Abstract. Fully convolutional neural networks (FCN) are successfully used for pixel-wise land cover classification - the task of identifying the physical material of the Earth’s surface for every pixel in an image. The acquisition of large training datasets is challenging, especially in remote sensing, but necessary for a FCN to perform well. One way to circumvent manual labelling is the usage of existing databases, which usually contain a certain amount of label noise when combined with another data source. As a first part of this work, we investigate the impact of training data on a FCN. We experiment with different amounts of training data, varying w.r.t. the covered area, the available acquisition dates and the amount of label noise. We conclude that the more data is used for training, the better is the generalization performance of the model, and the FCN is able to mitigate the effect of label noise to a high degree. Another challenge is the imbalanced class distribution in most real-world datasets, which can cause the classifier to focus on the majority classes, leading to poor classification performance for minority classes. To tackle this problem, in this paper, we use the cosine similarity loss to force feature vectors of the same class to be close to each other in feature space. Our experiments show that the cosine loss helps to obtain more similar feature vectors, but the similarity of the cluster centers also increases.


Author(s):  
C. Yang ◽  
F. Rottensteiner ◽  
C. Heipke

Abstract. Pixel-based land cover classification of aerial images is a standard task in remote sensing, whose goal is to identify the physical material of the earth’s surface. Recently, most of the well-performing methods rely on encoder-decoder structure based convolutional neural networks (CNN). In the encoder part, many successive convolution and pooling operations are applied to obtain features at a lower spatial resolution, and in the decoder part these features are up-sampled gradually and layer by layer, in order to make predictions in the original spatial resolution. However, the loss of spatial resolution caused by pooling affects the final classification performance negatively, which is compensated by skip-connections between corresponding features in the encoder and the decoder. The most popular ways to combine features are element-wise addition of feature maps and 1x1 convolution. In this work, we investigate skip-connections. We argue that not every skip-connections are equally important. Therefore, we conducted experiments designed to find out which skip-connections are important. Moreover, we propose a new cosine similarity loss function to utilize the relationship of the features of the pixels belonging to the same category inside one mini-batch, i.e. these features should be close in feature space. Our experiments show that the new cosine similarity loss does help the classification. We evaluated our methods using the Vaihingen and Potsdam dataset of the ISPRS 2D semantic labelling challenge and achieved an overall accuracy of 91.1% for both test sites.


2021 ◽  
Vol 13 (3) ◽  
pp. 364
Author(s):  
Han Gao ◽  
Jinhui Guo ◽  
Peng Guo ◽  
Xiuwan Chen

Recently, deep learning has become the most innovative trend for a variety of high-spatial-resolution remote sensing imaging applications. However, large-scale land cover classification via traditional convolutional neural networks (CNNs) with sliding windows is computationally expensive and produces coarse results. Additionally, although such supervised learning approaches have performed well, collecting and annotating datasets for every task are extremely laborious, especially for those fully supervised cases where the pixel-level ground-truth labels are dense. In this work, we propose a new object-oriented deep learning framework that leverages residual networks with different depths to learn adjacent feature representations by embedding a multibranch architecture in the deep learning pipeline. The idea is to exploit limited training data at different neighboring scales to make a tradeoff between weak semantics and strong feature representations for operational land cover mapping tasks. We draw from established geographic object-based image analysis (GEOBIA) as an auxiliary module to reduce the computational burden of spatial reasoning and optimize the classification boundaries. We evaluated the proposed approach on two subdecimeter-resolution datasets involving both urban and rural landscapes. It presented better classification accuracy (88.9%) compared to traditional object-based deep learning methods and achieves an excellent inference time (11.3 s/ha).


2019 ◽  
Vol 11 (12) ◽  
pp. 1461 ◽  
Author(s):  
Husam A. H. Al-Najjar ◽  
Bahareh Kalantar ◽  
Biswajeet Pradhan ◽  
Vahideh Saeidi ◽  
Alfian Abdul Halin ◽  
...  

In recent years, remote sensing researchers have investigated the use of different modalities (or combinations of modalities) for classification tasks. Such modalities can be extracted via a diverse range of sensors and images. Currently, there are no (or only a few) studies that have been done to increase the land cover classification accuracy via unmanned aerial vehicle (UAV)–digital surface model (DSM) fused datasets. Therefore, this study looks at improving the accuracy of these datasets by exploiting convolutional neural networks (CNNs). In this work, we focus on the fusion of DSM and UAV images for land use/land cover mapping via classification into seven classes: bare land, buildings, dense vegetation/trees, grassland, paved roads, shadows, and water bodies. Specifically, we investigated the effectiveness of the two datasets with the aim of inspecting whether the fused DSM yields remarkable outcomes for land cover classification. The datasets were: (i) only orthomosaic image data (Red, Green and Blue channel data), and (ii) a fusion of the orthomosaic image and DSM data, where the final classification was performed using a CNN. CNN, as a classification method, is promising due to hierarchical learning structure, regulating and weight sharing with respect to training data, generalization, optimization and parameters reduction, automatic feature extraction and robust discrimination ability with high performance. The experimental results show that a CNN trained on the fused dataset obtains better results with Kappa index of ~0.98, an average accuracy of 0.97 and final overall accuracy of 0.98. Comparing accuracies between the CNN with DSM result and the CNN without DSM result for the overall accuracy, average accuracy and Kappa index revealed an improvement of 1.2%, 1.8% and 1.5%, respectively. Accordingly, adding the heights of features such as buildings and trees improved the differentiation between vegetation specifically where plants were dense.


2020 ◽  
Vol 12 (18) ◽  
pp. 3091
Author(s):  
Shuai Xie ◽  
Liangyun Liu ◽  
Jiangning Yang

Percentile features derived from Landsat time-series data are widely adopted in land-cover classification. However, the temporal distribution of Landsat valid observations is highly uneven across different pixels due to the gaps resulting from clouds, cloud shadows, snow, and the scan line corrector (SLC)-off problem. In addition, when applying percentile features, land-cover change in time-series data is usually not considered. In this paper, an improved percentile called the time-series model (TSM)-adjusted percentile is proposed for land-cover classification based on Landsat data. The Landsat data were first modeled using three different time-series models, and the land-cover changes were continuously monitored using the continuous change detection (CCD) algorithm. The TSM-adjusted percentiles for stable pixels were then derived from the synthetic time-series data without gaps. Finally, the TSM-adjusted percentiles were used for generating supervised random forest classifications. The proposed methods were implemented on Landsat time-series data of three study areas. The classification results were compared with those obtained using the original percentiles derived from the original time-series data with gaps. The results show that the land-cover classifications obtained using the proposed TSM-adjusted percentiles have significantly higher overall accuracies than those obtained using the original percentiles. The proposed method was more effective for forest types with obvious phenological characteristics and with fewer valid observations. In addition, it was also robust to the training data sampling strategy. Overall, the methods proposed in this work can provide accurate characterization of land cover and improve the overall classification accuracy based on such metrics. The findings are promising for percentile-based land cover classification using Landsat time series data, especially in the areas with frequent cloud coverage.


Author(s):  
M. Zhou ◽  
C. R. Li ◽  
L. Ma ◽  
H. C. Guan

In this study, a land cover classification method based on multi-class Support Vector Machines (SVM) is presented to predict the types of land cover in Miyun area. The obtained backscattered full-waveforms were processed following a workflow of waveform pre-processing, waveform decomposition and feature extraction. The extracted features, which consist of distance, intensity, Full Width at Half Maximum (FWHM) and back scattering cross-section, were corrected and used as attributes for training data to generate the SVM prediction model. The SVM prediction model was applied to predict the types of land cover in Miyun area as ground, trees, buildings and farmland. The classification results of these four types of land covers were obtained based on the ground truth information according to the CCD image data of Miyun area. It showed that the proposed classification algorithm achieved an overall classification accuracy of 90.63%. In order to better explain the SVM classification results, the classification results of SVM method were compared with that of Artificial Neural Networks (ANNs) method and it showed that SVM method could achieve better classification results.


2018 ◽  
Vol 7 (11) ◽  
pp. 424 ◽  
Author(s):  
Ozgun Akcay ◽  
Emin Avsar ◽  
Melis Inalpulat ◽  
Levent Genc ◽  
Ahmet Cam

Using object-based image analysis (OBIA) techniques for land use-land cover classification (LULC) has become an area of interest due to the availability of high-resolution data and segmentation methods. Multi-resolution segmentation in particular, statistically seen as the most used algorithm, is able to produce non-identical segmentations depending on the required parameters. The total effect of segmentation parameters on the classification accuracy of high-resolution imagery is still an open question, though some studies were implemented to define the optimum segmentation parameters. However, recent studies have not properly considered the parameters and their consequences on LULC accuracy. The main objective of this study is to assess OBIA segmentation and classification accuracy according to the segmentation parameters using different overlap ratios during image object sampling for a predetermined scale. With this aim, we analyzed and compared (a) high-resolution color-infrared aerial images of a newly-developed urban area including different land use types; (b) combinations of multi-resolution segmentation with different shape, color, compactness, bands, and band-weights; and (c) accuracies of classifications based on varied segmentations. The results of various parameters in the study showed an explicit correlation between segmentation accuracies and classification accuracies. The effect of changes in segmentation parameters using different sample selection methods for five main LULC types was studied. Specifically, moderate shape and compactness values provided more consistency than lower and higher values; also, band weighting demonstrated substantial results due to the chosen bands. Differences in the variable importance of the classifications and changes in LULC maps were also explained.


Sign in / Sign up

Export Citation Format

Share Document