Solar Air-Conditioning System Performance Optimization by TRNSYS Simulation Modelling

1995 ◽  
Vol 2 (3) ◽  
pp. 27-32
Author(s):  
Yuen Po-ki ◽  
Alan Dunn ◽  
Mankit Ray Yeung
Author(s):  
Ali Mohammad Jafarpour ◽  
Farivar Fazelpour ◽  
Seyyed Abbas Mousavi

AbstractIn this study an experimental design was developed to optimize the performance and structure of a membrane-based parallel-plate liquid desiccant dehumidifier used in air conditioning regeneration system which operates under high humidity weather conditions. We conducted a series of polymeric porous membranes with different compositions fabricated that were prepared with various weight percentages of polysulfone (PSU), mixed with N-methyl-2-pyrrolidone (NMP) and dimethyl form amide (DMF) solvents. Furthermore, the designed experiments were performed under various operating conditions, indicating that the dehumidification efficiency declines with increasing flow rate, temperature, and humidity. Consequently, a membrane with optimized porosity and moisture permeability was selected which resulted in eliminating the carryover of solution droplets in the air, largely due to separating the flow condition of liquid desiccant (Li Cl) and air. This specific design is also greatly benefited by removing the water vapor from the air stream. The results of mathematical model simulations indicate that the DMF solvent had higher dehumidification capability compared with that of NMP under the optimized operating conditions. Additionally, it can clarify the porosity of the membrane which plays a significant role in the overall performance. Therefore, the fabricated membrane produces fresh cool air, and it can be applied as a guiding sample for designing the membrane-based dehumidifier with improved performance.


2014 ◽  
Vol 699 ◽  
pp. 828-833 ◽  
Author(s):  
Sumeru ◽  
Markus ◽  
Farid Nasir Ani ◽  
Henry Nasution

Air conditioning system consumes approximately 50% of the total energy consumption of buildings. Split-type air conditioner is the most widely used in residential and commercial buildings. As a result, enhancement on the performance of the air conditioners will yield a significant energy savings. The use of ejector as an expansion device on the split-type air conditioners is one method to increase the system performance. Exergy analysis on a split-type air conditioner uses an ejector as an expansion device at room and outdoor temperatures of 24 °C and 34 °C, respectively, yielded the percentage of exergy reduction up to 40.6%. Also, the exergy losses on in the compressor had the highest impact on the performance improvement of the split-type air conditioner.


2011 ◽  
Vol 19 (01) ◽  
pp. 57-68 ◽  
Author(s):  
MIGUEL PADILLA

Commercial multiple evaporators variable refrigerant flow (VRF) HVAC systems present many advantages such as being energy saving and the capability of adjusting refrigerant mass flow rate according to the change of high rises occurrence. This paper deals with an experimental control volume exergy analysis in a VRF air conditioning system. The experimental results show that the brunt of the total exergy destroyed in the whole system occurs in the outdoor unit, where the exergy destroyed in the condenser is more important. The values of coefficient of performance (COP) obtained for the tests increase as the system reaches operational conditions imposed in every indoor unit zone. The VRF system analyzed is highly sensitive to the action of the constant speed compressor. The use of an inverter compressor improves the system performance by adjusting the power consumption according to the cooling load in the evaporators.


2015 ◽  
Vol 799-800 ◽  
pp. 770-773
Author(s):  
Zhi Jiang Wu

The refrigeration circle performance of air conditioning comparing analysis and displacement between R1270 and R22 is studied in this paper. In addition, the system performance optimization of R1270 refrigeration circle is discussed.The experimental results show that the smaller tube diameter of heat exchanger for R1270 system is easy to improve the energy efficiency ratio in the unimproved system.These results are important for theory and reality to research this type of air conditioning.


Sign in / Sign up

Export Citation Format

Share Document