Bioremediation of polycyclic aromatic hydrocarbons by fungal laccases engineered by directed evolution

2007 ◽  
Vol 25 (2-4) ◽  
pp. 219-228 ◽  
Author(s):  
Miren Zumárraga ◽  
Francisco J. Plou ◽  
Humberto García-Arellano ◽  
Antonio Ballesteros ◽  
Miguel Alcalde
2002 ◽  
Vol 7 (6) ◽  
pp. 547-553 ◽  
Author(s):  
Miguel Alcalde ◽  
Thomas Bulter ◽  
Frances H. Arnold

Polycyclic aromatic hydrocarbons (PAHs) are highly toxic organic pollutants widely distributed in terrestrial and aquatic environments. In the present work, 2 colorimetric assays for laccase-catalyzed degradation of PAHs were developed based on studies of the oxidation of 12 aromatic hydrocarbons by fungal laccases from Trametes versicolor and Myceliophthora thermophila. Using a sodium borohydride water-soluble solution, the authors could reduce the single product of laccase-catalyzed anthracene biooxidation into the orange-colored 9,10-anthrahydroquinone, which is quantifiable spectrophotometrically. An assay using polymeric dye (Poly R-478) as a surrogate substrate for lignin degradation by laccase in the presence of mediator is also presented. The decolorization of Poly R-478 was correlated to the oxidation of PAHs mediated by laccases. This demonstrates that a ligninolytic indicator such as Poly R-478 can be used to screen for PAH-degrading laccases; it will also be useful in screening mutant libraries in directed evolution experiments. Poly R-478 is stable and readily soluble. It has a high extinction coefficient and low toxicity toward white rot fungi, yeast, and bacteria, which allow its application in a solid-phase assay format.


2019 ◽  
Vol 64 (1) ◽  
pp. 55-67
Author(s):  
Vlad Pӑnescu ◽  
◽  
Mihaela Cӑtӑlina Herghelegiu ◽  
Sorin Pop ◽  
Mircea Anton ◽  
...  

2019 ◽  
Author(s):  
Yachu Du ◽  
Kyle Plunkett

We show that polycyclic aromatic hydrocarbon (PAH) chromophores that are linked between two five-membered rings can access planarized structures with reduced optical gaps and redox potentials. Two aceanthrylene chromophores were connected into dimer model systems with the chromophores either projected outward (2,2’-biaceanthrylene) or inward (1,1’-biaceanthrylene) and the optical and electronic properties were compared. Only the planar 2,2’-biaceanthrylene system showed significant reductions of the optical gaps (1 eV) and redox potentials in relation to the aceanthrylene monomer.<br>


2019 ◽  
Author(s):  
Yachu Du ◽  
Kyle Plunkett

We show that polycyclic aromatic hydrocarbon (PAH) chromophores that are linked between two five-membered rings can access planarized structures with reduced optical gaps and redox potentials. Two aceanthrylene chromophores were connected into dimer model systems with the chromophores either projected outward (2,2’-biaceanthrylene) or inward (1,1’-biaceanthrylene) and the optical and electronic properties were compared. Only the planar 2,2’-biaceanthrylene system showed significant reductions of the optical gaps (1 eV) and redox potentials in relation to the aceanthrylene monomer.<br>


Author(s):  
M. Assad ◽  
V. V. Grushevski ◽  
O. G. Penyazkov ◽  
I. N. Tarasenko

The concentration of 16 polycyclic aromatic hydrocarbons (PAHs) in the gasoline combustion products emitted into the atmosphere by internal combustion engines (ICE) has been measured using the gas chromatography method. The concentrations of PAHs in the exhaust gases sampled behind a catalytic converter has been determined when the ICE operates in five modes: idle mode, high speed mode, load mode, ICE cold start mode (engine warm-up) and transient mode. Using 92 RON, 95 RON and 98 RON gasoline the effect of the octane number of gasoline on the PAHs content in the exhaust gases has been revealed. The concentration of the most carcinogenic component (benzo(α)pyrene) in the exhaust gases behind a catalytic converter significantly exceeds a reference value of benzo(α)pyrene in the atmospheric air established by the WHO and the EU for ICE in the load mode.


Sign in / Sign up

Export Citation Format

Share Document