On the Numerical Solution of the Dynamically Loaded Hydrodynamic Lubrication of the Point Contact

1991 ◽  
Vol 34 (2) ◽  
pp. 195-204 ◽  
Author(s):  
Sang G. Lim ◽  
Joseph M. Prahl ◽  
David E. Brewe
Author(s):  
Radek Polisˇcˇuk ◽  
Michal Vaverka ◽  
Martin Vrbka ◽  
Ivan Krˇupka ◽  
Martin Hartl

The surface topography plays significant role in lifetime of highly loaded machine parts with lubricated contacts. Many elements like gears, rolling bearings, cams and traction drives operate in mixed lubrication conditions, where the lubricant film behavior closely implies the main practical performance parameters such as friction wear, contact fatigue and scuffing. For prediction of wear and especially contact fatigue, the values and distribution of the pressure in rolling contact are often required. The usual theoretical approach based on numerical solution of physical-mathematical models built around the Reynolds equation can be extremely time consuming, especially when lubricant films are very thin, and contact load and required resolution very high. This study presents a further refined approach to our previously published experimental method, based on on inverse elasticity theory and fast convolution transformation between the lubricant film thickness map and the pressure distribution within the point contact. The experimental film thickness maps of EHD lubricated contacts with smooth and dented surfaces were processed using colorimetric interferometry and validated using numerical solution, in order to calibrate numerical parameters and to find limits of the new approach.


2021 ◽  
Author(s):  
Yujuan Li ◽  
Wen Wang ◽  
Mingfei Ma ◽  
Yongqiang Wang

1973 ◽  
Vol 187 (1) ◽  
pp. 71-78 ◽  
Author(s):  
B. R. Reason ◽  
D. Dyer

We present a numerical solution for the operating conditions of a hydrodynamic porous journal bearing. The numerical method allows for the possibility of variable porosity in the bearing matrix, but the solution has been achieved on the assumption of matrix homogeneity. The relation between the various bearing parameters have been shown for a variety of bearing geometries and permeabilities enabling the operating conditions for this type of bearing to be better appreciated. A comparison of the present solution with approximate solutions used by other authors has been made, which indicates the useful working range of the approximate solutions.


Author(s):  
C A Holt ◽  
H P Evans ◽  
R W Snidle

The paper describes a numerical solution method for the point contact elastohydrodynamic lubrication (EHL) problem under non-Newtonian, isothermal conditions. The theoretical formulation of the non-Newtonian effect is general and may be applied to both shear thinning and limiting shear stress behaviour. The particular rheological model investigated in this work is the Eyring ‘sinh law’ relation. The numerical solution of the lubrication equations is based upon a control volume approach rather than the more usual methods that utilize a modified Reynolds equation. This new approach ensures that flow continuity is satisfied at the discretization level. Results are presented to show the effect of non-Newtonian behaviour on film thickness and pressure distribution in circular EHL contacts operating over a range of slide-roll ratios from 0 (pure rolling) to 1.5. Under conditions of pure rolling or low sliding there is found to be little effect of non-Newtonian behaviour, but at the highest degree of sliding the film thickness over the central, flattened area of the contact is reduced by up to 10 per cent at the highest rolling speed of 0.75 m/s.


1983 ◽  
Vol 105 (1) ◽  
pp. 48-63 ◽  
Author(s):  
C. Bagci ◽  
A. P. Singh

The effect of the film shape on the load carrying capacity of a hydrodynamically lubricated bearing has not been considered an important factor in the past. Flat-faced tapered bearing and the Raileigh’s step bearing of constant film thickness have been the primary forms of film shapes for slider bearing studies and design data developments. This article, by the computer aided numerical solution of the Reynolds equation for two dimensional incompressible lubricant flow, investigates hydrodynamically lubricated slider bearings having different film shapes and studies the effect of the film shape on the performance characteristics of finite bearings; and it shows that optimized bearing with film shapes having descending slope toward the trailing edge of the bearing has considerably higher load carrying capacity than the optimized flat-faced tapered bearing of the same properties. For example the truncated cycloidal film shape yields 26.3 percent higher load carrying capacity for Lz/Lx = 1 size ratio, and 44 percent higher for Lz/Lx = 1/2. The article then presents charts for the optimum designs of finite slider bearings having tapered, exponential, catenoidal, polynomial, and truncated-cycloidal film shapes, and illustrates their use in numerical bearing design examples. These charts also furnish information on flow rate, side leakage, temperature rise, coefficient of friction, and friction power loss in optimum bearings. Appended to the article are analytical solutions for infinitely wide bearings with optimum bearing characteristics. The computer aided numerical solution of the Reynolds equation in most general form is presented by which finite or infinitely wide hydrodynamically or hydrostatically lubricated bearings, externally pressurized or not, can be studied. A digital computer program is made available.


2021 ◽  
Vol 264 ◽  
pp. 04076
Author(s):  
Auezhan Amanov ◽  
Xasan Turkmenov

In this paper, full-film lubrication between the rigid smooth and dimpled surfaces was addressed. A theoretical model is developed to study the effect of a dimple on friction where the smooth surface is rotating while the dimpled surface is at rest. To simplify the problem, the magnified dimple cell is investigated along with some assumptions. Because dimples deploy periodically along with the x and y directions, the lubricant pressure also deploys periodically. A theoretical model can be developed for one cell and then extended to the whole surface. The main goal of this study is to understand the dimple effect on friction in a hydrodynamic lubrication regime. The main applications of this model are several types of bearings (point contact, line contact etc.) and mechanical parts where two surfaces interact in relative motion. Findings the optimum dimensions for the dimples also seem to be one of the interesting research areas in mechanization of agricultural and renewable energy sources.


Sign in / Sign up

Export Citation Format

Share Document