Synthesis, Magnetic Susceptibility, Thermodynamic Study and Bio-Evaluation of Transition Metal Complexes of New Schiff Base Incorporating INH Pharmacophore

Author(s):  
Zamzam Taher Omar (Al-Ahdal) ◽  
Shivaji Jadhav ◽  
Rashmi Pathrikar ◽  
Sumit Shejul ◽  
Megha Rai
2008 ◽  
Vol 73 (11) ◽  
pp. 1063-1071 ◽  
Author(s):  
N. Raman ◽  
Syed Ali ◽  
Dhaveethu Raja

A new series of transition metal complexes of Cu(II), Ni(II), Co(II) and Zn(II) have been designed and synthesized using a Schiff base (L) derived from 4-aminoantipyrine, benzaldehyde and o-phenylenediamine. The structural features were derived from their elemental analyses, magnetic susceptibility and molar conductivity, as well as from mass, IR, UV-Vis, 1H-NMR and ESR spectral studies. The FAB mass spectral data and elemental analyses showed that the complexes had a composition of the ML type. The UV-Vis and ESR spectral data of the complexes suggested a square-planar geometry around the central metal ion. The magnetic susceptibility values of the complexes indicated that they were monomeric in nature. Antimicrobial screening tests were also performed against four bacteria, viz. Salmonella typhi, Staphylococcus aureus, Escherichia coli, and Bacillus subtilis and three fungi, viz. Aspergillus niger, Aspergillus flavus and Rhizoctonia bataicola. These data gave good results in the presence of metal ion in the ligand system. The nuclease activity of the above metal complexes shows that only the copper complex cleaves CT DNA in the presence of an oxidant.


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Jitendra N. Borase ◽  
R. G. Mahale ◽  
S. S. Rajput ◽  
Dhanraj S. Shirsath

AbstractIn recent years heterocyclic Schiff base metal complexes attract more attention in biological application and also showing interesting co-ordination chemistry. In this research article a novel heterocyclic methyl-substituted pyridine Schiff base transition metal complexes of Fe(III), Co(III), Cu(II), and Ni(II) have been design and synthesized by reacting metal acetate or metal salts (FeCl3, CoOAc, CuOAc, NiOAc), with substituted heterocyclic ligand. All newly synthesized metalcomplexes were characterized by spectroscopic data and screened for elemental analysis, FT-IR, ESR, Magnetic susceptibility and TGA. The Electronic spectra and magnetic susceptibility measurements indicates that square planer and octahedral geometry of these complexes also suggest their structure in which (N, O) group acts as bidentate ligand. The thermal stability, decomposition rate and thermodynamic parameters of synthesized metal complexes were calculated by Freeman Carroll method. Also the biostatistical data of antimicrobial and anti-oxidant activities of synthesized metal complexes indicates moderate to good results. Graphic abstract


2018 ◽  
Vol 69 (7) ◽  
pp. 1678-1681
Author(s):  
Amina Mumtaz ◽  
Tariq Mahmud ◽  
M. R. J. Elsegood ◽  
G. W. Weaver

New series of copper (II), cobalt (II), zinc (II), nickel (II), manganese (II), iron (II) complexes of a novel Schiff base were prepared by the condensation of sulphadizine and pyridoxal hydrochloride. The ligand and metal complexes were characterized by utilizing different instrumental procedures like microanalysis, thermogravimetric examination and spectroscopy. The integrated ligand and transition metal complexes were screened against various bacteria and fungus. The studies demonstrated the enhanced activity of metal complexes against reported microbes when compared with free ligand.


Sign in / Sign up

Export Citation Format

Share Document