Two-Phase Analysis of A Helical Microchannel Heat Sink Using Nanofluids

2015 ◽  
Vol 68 (11) ◽  
pp. 1266-1279 ◽  
Author(s):  
K. Narrein ◽  
S. Sivasankaran ◽  
P. Ganesan
2001 ◽  
Author(s):  
G. Hetsroni ◽  
A. Mosyak ◽  
Z. Segal

Abstract Experimental investigation of a heat sink for electronics cooling is performed. The objective is to keep the operating temperature at a relatively low level of about 323–333K, while reducing the undesired temperature variation in both the streamwise and transverse directions. The experimental study is based on systematic temperature, flow and pressure measurements, infrared radiometry and high-speed digital video imaging. The heat sink has parallel triangular microchannels with a base of 250μm. According to the objectives of the present study, Vertrel XF is chosen as the working fluid. Experiments on flow boiling of Vertrel XF in the microchannel heat sink are performed to study the effect of mass velocity and vapor quality on the heat transfer, as well as to compare the two-phase results to a single-phase water flow.


Author(s):  
Zhichuan Sun ◽  
Yang Luo ◽  
Junye Li ◽  
Wei Li ◽  
Jingzhi Zhang ◽  
...  

Abstract The manifold microchannel heat sink receives an increasing number of attention lately due to its high heat flux dissipation. Numerical investigation of boiling phenomena in manifold microchannel (MMC) heat sinks remains a challenge due to the complexity of fluid route and the limitation of numerical accuracy. In this study, a computational fluid dynamics (CFD) approach including subcooled two-phase flow boiling process and conjugate heat transfer effect is performed using a MMC unit cell model. Different from steady-state single phase prediction in MMC heat sink, this type of modeling allows for the transient simulation for two-phase interface evolution during the boiling process. A validation case is conducted to validate the heat transfer phenomenon among three phases. Besides, this model is used for the assessment of the manifold dimensions in terms of inlet and outlet widths at the mass flux of 1300 kg/m2·s. With different ratios of inlet-to-outlet area, the thermal resistances remain nearly stable.


Author(s):  
Shailesh N. Joshi ◽  
Danny J. Lohan ◽  
Ercan M. Dede

Abstract The heat transfer and fluid flow performance of a hybrid jet plus multipass microchannel heat sink in two-phase operation is evaluated for the cooling of a single large area, 3.61 cm2, heat source. The two-layer branching microchannel heat sink is evaluated using HFE-7100 as the coolant at three inlet volumetric flow rates of 150, 300, and 450 ml/min. The boiling performance is highest for the flow rate of 450 ml/min with the maximum heat flux value of 174 W/cm2. Critical heat flux (CHF) was observed at two of the tested flow rates, 150 and 300 ml/min, before reaching the maximum operating temperature for the serpentine heater. At 450 ml/min, the heater reached the maximum allowable temperature prior to observing CHF. The maximum pressure drop for the heat sink is 34.1 kPa at a heat flux of 164 W/cm2. Further, the peak heat transfer coefficient value of the heat sink is 28,700 W/m2 K at a heat flux value of 174 W/cm2 and a flow rate of 450 ml/min. Finally, a validated correlation of the single device cooler is presented that predicts heat transfer performance and can be utilized in the design of multidevice coolers.


Author(s):  
Ayman Megahed

This paper investigates experimentally flow boiling characteristics in a cross-linked microchannel heat sink at low mass fluxes and high heat fluxes. The heat sink consists of 45 straight microchannels with a hydraulic diameter of 248 μm and heated length of 16 mm. Three cross-links, of width 500 μm, are introduced in the present microchannel heat sink to achieve better temperature uniformity and to avoid flow maldistribution. Flow visualization, flow instability, and two-phase pressure drop measurements are conducted using the dielectric coolant FC-72 for the range of heat flux from 20.1 to 104.2 kW/m2, mass flux from 109 to 290 kg/m2.s, and exit quality from 0.02 to 0.65. Flow visualization studies indicate that the observed flow regime is primarily slug. Instability results show that the periods and amplitudes of inlet pressure and outlet saturation temperature oscillations decrease with increasing mass flux. The two-phase pressure drop strongly increases with the exit quality and the two-phase frictional pressure drop increases by a factor of 1.6–2, at xe, o < 0.3, as compared with that in the straight microchannel heat sink.


Sign in / Sign up

Export Citation Format

Share Document