Critical Review on the Analytical Techniques for the Determination of the Oldest Statin—Atorvastatin—in Bulk, Pharmaceutical Formulations and Biological Fluids

2017 ◽  
Vol 47 (6) ◽  
pp. 538-555 ◽  
Author(s):  
K. S. Kokilambigai ◽  
R. Seetharaman ◽  
K. S. Lakshmi
2018 ◽  
Vol 48 (4) ◽  
pp. 317-329 ◽  
Author(s):  
Marilene Lopes Ângelo ◽  
Fernanda de Lima Moreira ◽  
André Luís Morais Ruela ◽  
Ana Laura Araújo Santos ◽  
Hérida Regina Nunes Salgado ◽  
...  

2020 ◽  
Vol 17 (1) ◽  
pp. 31-39
Author(s):  
Marilene Lopes Ângelo ◽  
Fernanda de Lima Moreira ◽  
Ana Laura Araújo Santos ◽  
Hérida Regina Nunes Salgado ◽  
Magali Benjamim de Araújo

Background:: Tibolone is a synthetic steroid commercialized by Organon under the brand name Livial (Org OD14), which is used in hormone therapy for menopause management and treatment of postmenopausal osteoporosis. Tibolone is defined as a selective tissue estrogenic activity regulator (STEAR) demonstrating tissue-specific effects on several organs such as brain, breast, urogenital tract, endometrium, bone and cardiovascular system. Aims:: This work aims to (1) present an overview of important published literature on existing methods for the analysis of tibolone and/or its metabolites in pharmaceutical formulations and biological fluids and (2) to conduct a critical comparison of the analytical methods used in doping control, pharmacokinetics and pharmaceutical formulations analysis of tibolone and its metabolites. Results and conclusions: : The major analytical method described for the analysis of tibolone in pharmaceutical formulations is High Pressure Liquid Chromatography (HPLC) coupled with ultraviolet (UV) detection, while Liquid Chromatography (LC) or Gas Chromatography (GC) used in combination with Mass Spectrometry (MS) or tandem mass spectrometry (MS/MS) is employed for the analysis of tibolone and/or its metabolites in biological fluids.


2020 ◽  
Vol 16 (3) ◽  
pp. 208-222
Author(s):  
Miglena Smerikarova ◽  
Stanislav Bozhanov ◽  
Vania Maslarska

Background: Sartans are mostly used as a part of combination with additional medicines in the therapy of essencial hypertension. Preferred combinations are ARB and thiazide diuretics (Hydrochlorothiazide (HCT) and Chlorthalidone (CHL)) or ARB and calcium antagonists. The number of sartans mostly prescribed by specialists is only seven - Candesartan (CDS), Eprosartan (EPS), Irbesartan (IBS), Losartan (LOS), Olmesartan (OMS), Telmisartan (TMS) and Valsartan (VLS). Methods: The widespread use of sartans in the treatment of hypertension requires reliable methods of analysis. Bulk drugs and pharmaceutical preparations should be analyzed to ensure the quality of the medicinal products reaching patients. On the other hand, the analysis of drugs in biological fluids aims to trace and improve patient care by adjusting the therapeutic doses of drugs. According to our knowledge, a review devoted to the analysis of sartans was published in 2014. Results: Spectral methods are widely used in the analysis of bulk drugs and pharmaceutical dosage forms due to their relatively simple procedures, low reagent and sample consumption, speed, precision and accuracy combined with accessibility and comparatively low cost of common apparatus. Many papers for determination of sartans in bulk drugs and pharmaceutical preparations based on liquid chromatographic techniques were published in the available literature. Among these methods, HPLC takes the leading place but UPLC and HPTLC are also present. Conclusion: The widespread use of sartans in the treatment of hypertension requires reliable methods of analysis. Bulk drugs and pharmaceutical preparations should be analyzed to ensure the quality of the medicinal products reaching patients. On the other hand, the analysis of drugs in biological fluids aims to trace and improve patient care by adjusting the therapeutic doses of drugs. Since 2014, many articles have been published on the sartans analysis and this provoked our interest to summarize the latest applications in the analysis of sartans in pharmaceutical formulations and biological media. Articles published from 2014 to 2018 are covered.


Amino Acids ◽  
2021 ◽  
Author(s):  
Grażyna Gałęzowska ◽  
Joanna Ratajczyk ◽  
Lidia Wolska

AbstractThe quantitation and qualification of amino acids are most commonly used in clinical and epidemiological studies, and provide an excellent way of monitoring compounds in human fluids which have not been monitored previously, to prevent some diseases. Because of this, it is not surprising that scientific interest in evaluating these compounds has resurfaced in recent years and has precipitated the development of a multitude of new analytical techniques. This review considers recent developments in HPLC analytics on the basis of publications from the last few years. It helps to update and systematize knowledge in this area. Particular attention is paid to the progress of analytical methods, pointing out the advantages and drawbacks of the various techniques used for the preparation, separation and determination of amino acids. Depending on the type of sample, the preparation conditions for HPLC analysis change. For this reason, the review has focused on three types of samples, namely urine, blood and cerebrospinal fluid. Despite time-consuming sample preparation before HPLC analysis, an additional derivatization technique should be used, depending on the detection technique used. There are proposals for columns that are specially modified for amino acid separation without derivatization, but the limit of detection of the substance is less beneficial. In view of the fact that amino acid analyses have been performed for years and new solutions may generate increased costs, it may turn out that older proposals are much more advantageous.


2006 ◽  
Vol 89 (6) ◽  
pp. 1565-1572 ◽  
Author(s):  
Mohamed Walash ◽  
Fathalla Belal ◽  
Nahed El-Enany ◽  
Amina Abdelsalam

Abstract A highly sensitive spectrofluorometric method was developed for the determination of verapamil hydrochloride (VP HCl) in pharmaceutical formulations and biological fluids. The proposed method is based on investigation of the fluorescence spectral behavior of VP HCl in micellar systems, such as sodium dodecyl sulfate (SDS) and β-cyclodextrin (β-CD). In aqueous solutions of borate buffer of pH 9 and 8.5, VP HCl was well incorporated into SDS and β-CD, respectively, with enhancement of its native fluorescence. The fluorescence was measured at 318 nm after excitation at 231 nm. The fluorescence intensity enhancements were 183 and 107% in SDS and in β-CD, respectively. The fluorescence-concentration plots were rectilinear over the range of 0.020.2 and 0.020.25 μg/mL, with lower detection limits of 5.58 × 103 and 3.62 × 103 μg/mL in SDS and β-CD, respectively. The method was successfully applied to the analysis of commercial tablets and the results were in good agreement with those obtained with the official method. The method was further applied to the determination of VP HCl in real and spiked human plasma. The mean % recoveries in the case of spiked human plasma (n 4) was 92.59 3.11 and 88.35 2.55 using SDS and β-CD, respectively, while that in real human plasma (n 3) was 90.17 6.93 and 89.17 6.50 using SDS and β-CD, respectively. The application of the method was extended to the stability studies of VP HCl after exposureto ultraviolet radiation and upon oxidation with hydrogen peroxide.


2017 ◽  
Vol 41 (24) ◽  
pp. 15612-15624 ◽  
Author(s):  
Gehad G. Mohamed ◽  
Eman Y. Z. Frag ◽  
M. A. Zayed ◽  
M. M. Omar ◽  
Sally E. A. Elashery

Newly developed modified and in situ modified carbon paste sensors were developed for the determination of chlorpromazine hydrochloride (CPZHC) in pharmaceutical formulations and biological fluids (urine and serum).


Sign in / Sign up

Export Citation Format

Share Document