Influence of FLR correction on Jeans instability in rotating radiative QMHD fluid model

Author(s):  
D. L. Sutar ◽  
G. Ahmed ◽  
R. K. Pensia
2017 ◽  
Vol 83 (1) ◽  
Author(s):  
M. Jamil ◽  
A. Rasheed ◽  
M. Amir ◽  
G. Abbas ◽  
Young-Dae Jung

The Jeans instability is examined in quantum dusty magnetoplasmas due to low-frequency magnetosonic perturbations. The fluid model consisting of the momentum balance equation for quantum plasmas, Poisson’s equation for the gravitational potential and Maxwell’s equations for electromagnetic magnetosonic perturbations is solved. The numerical analysis elaborates the significant contribution of magnetic field, electron number density and variable dust mass to the Jeans instability.


2017 ◽  
Vol 83 (2) ◽  
Author(s):  
Shraddha Argal ◽  
Anita Tiwari ◽  
R. P. Prajapati ◽  
P. K. Sharma

The present problem deals with the study of gravitational (Jeans) instability of magnetized, rotating, anisotropic plasmas considering quantum effects. The basic equations of the considered system are constructed using combined Chew–Goldberger–Low (CGL) fluid model and quantum magnetohydrodynamic (QMHD) fluid model. A dispersion relation is obtained using the normal mode technique which is discussed for transverse and longitudinal modes of propagation. It is found that a rotating quantum plasma influences the gravitational mode in transverse propagation but not in longitudinal propagation. The presence of rotation decreases the critical wavenumber and it has a stabilizing effect on the Jeans instability criterion of magnetized quantum plasma in transverse propagation. The firehose instability is unaffected due to the presence of uniform rotation and quantum corrections. We observe from the numerical analysis that region of instability and critical Jeans wavenumber are both decreased due to the presence of uniform rotation. The stabilizing influence of uniform rotation is observed for magnetized, rotating, anisotropic plasmas in the presence of quantum correction. In the case of a longitudinal mode of propagation we found the Jeans instability criterion is not affected by rotation. The quantum diffraction term has a stabilizing effect on the growth rate of the Jeans instability when the wave propagates along the direction of the magnetic field.


2017 ◽  
Vol 72 (11) ◽  
pp. 1003-1008 ◽  
Author(s):  
M. Jamil ◽  
A. Rasheed ◽  
F. Hadi ◽  
G. Ali ◽  
M. Ayub

AbstractThe physical mechanism of magnetosonic perturbations which modifies the Jeans instability in streaming quantum dusty magnetoplasmas is examined. These perturbations are low frequency and electromagnetic in nature that propagate with Alfvén speed. The fluid model consisting of momentum balance equations for quantum plasmas, Poisson’s equation for gravitational potential, and Maxwell’s equations for magnetosonic perturbations is used for the coupled solution. The numerical analysis of the dispersion relation elaborates the significant contribution of streaming speed of plasma species at equilibrium v0, uniform external magnetic field B0, electron number density at equilibrium n0e, and variable dust mass md over the Jeans instability. This study helps to understand the possible mechanism responsible for the formation of astrophysical objects.


2018 ◽  
Vol 49 (8) ◽  
pp. 747-760 ◽  
Author(s):  
Muhammad Mubashir Bhatti ◽  
M. Ali Abbas ◽  
M. M. Rashidi

2003 ◽  
Vol 3 ◽  
pp. 208-219
Author(s):  
A.M. Ilyasov

In this paper we propose a model for determining the pressure loss due to friction in each phase in a three-layer laminar steady flow of immiscible liquid and gas flow in a flat channel. This model generalizes an analogous problem for a two-layer laminar flow, proposed earlier. The relations obtained in the final form for the pressure loss due to friction in liquids can be used as closing relations for the three-fluid model. These equations take into account the influence of interphase boundaries and are an alternative to the approach used in foreign literature. In this approach, the wall and interphase voltages are approximated by the formulas for a single-phase flow and do not take into account the mutual influence of liquids on the loss of pressure on friction in phases. The distribution of flow parameters in these two models is compared.


2014 ◽  
Vol 10 (5) ◽  
pp. 709-721 ◽  
Author(s):  
S. Nadeem ◽  
Hina Sadaf ◽  
M. Sadiq
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document