Streaming Jeans-Alfvén Instability in Quantum Magnetoplasmas

2017 ◽  
Vol 72 (11) ◽  
pp. 1003-1008 ◽  
Author(s):  
M. Jamil ◽  
A. Rasheed ◽  
F. Hadi ◽  
G. Ali ◽  
M. Ayub

AbstractThe physical mechanism of magnetosonic perturbations which modifies the Jeans instability in streaming quantum dusty magnetoplasmas is examined. These perturbations are low frequency and electromagnetic in nature that propagate with Alfvén speed. The fluid model consisting of momentum balance equations for quantum plasmas, Poisson’s equation for gravitational potential, and Maxwell’s equations for magnetosonic perturbations is used for the coupled solution. The numerical analysis of the dispersion relation elaborates the significant contribution of streaming speed of plasma species at equilibrium v0, uniform external magnetic field B0, electron number density at equilibrium n0e, and variable dust mass md over the Jeans instability. This study helps to understand the possible mechanism responsible for the formation of astrophysical objects.

2017 ◽  
Vol 83 (1) ◽  
Author(s):  
M. Jamil ◽  
A. Rasheed ◽  
M. Amir ◽  
G. Abbas ◽  
Young-Dae Jung

The Jeans instability is examined in quantum dusty magnetoplasmas due to low-frequency magnetosonic perturbations. The fluid model consisting of the momentum balance equation for quantum plasmas, Poisson’s equation for the gravitational potential and Maxwell’s equations for electromagnetic magnetosonic perturbations is solved. The numerical analysis elaborates the significant contribution of magnetic field, electron number density and variable dust mass to the Jeans instability.


2020 ◽  
Vol 14 (1) ◽  
pp. 11-20 ◽  
Author(s):  
Rashmi Srivastava ◽  
Hitendra K. Malik ◽  
Devi Singh

AbstractThe dust acoustic solitary waves are theoretically investigated in dusty plasmas for different cases of with and without density gradients. These low-frequency solitary waves are studied using appropriate Korteweg–de Vries equations obtained using relevant stretched coordinates. The soliton solutions in homogeneous plasma, weakly inhomogeneous plasma and strongly inhomogeneous plasma, are thoroughly investigated for studying the effect of different parameters like dust charge and density of all the plasma species on the soliton profiles. The combination of the dust charge with its number density changes the dynamics of the solitons and that is further affected by the number density of the hot ion with respect to the cold ions.


Aerospace ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 148
Author(s):  
Vittorio Giannetti ◽  
Manuel Martín Saravia ◽  
Luca Leporini ◽  
Simone Camarri ◽  
Tommaso Andreussi

One of the main oscillatory modes found ubiquitously in Hall thrusters is the so-called breathing mode. This is recognized as a relatively low-frequency (10–30 kHz), longitudinal oscillation of the discharge current and plasma parameters. In this paper, we present a synergic experimental and numerical investigation of the breathing mode in a 5 kW-class Hall thruster. To this aim, we propose the use of an informed 1D fully-fluid model to provide augmented data with respect to available experimental measurements. The experimental data consists of two datasets, i.e., the discharge current signal and the local near-plume plasma properties measured at high-frequency with a fast-diving triple Langmuir probe. The model is calibrated on the discharge current signal and its accuracy is assessed by comparing predictions against the available measurements of the near-plume plasma properties. It is shown that the model can be calibrated using the discharge current signal, which is easy to measure, and that, once calibrated, it can predict with reasonable accuracy the spatio-temporal distributions of the plasma properties, which would be difficult to measure or estimate otherwise. Finally, we describe how the augmented data obtained through the combination of experiments and calibrated model can provide insight into the breathing mode oscillations and the evolution of plasma properties.


1987 ◽  
Vol 38 (3) ◽  
pp. 473-481 ◽  
Author(s):  
D. B. Melrose

A kinetic theory for nonlinear processes involving Langmuir waves, developed in an earlier paper, is extended through consideration of three aspects of the temporal evolution, (i) Following Falk & Tsytovich (1975). the dynamic equation for the rate of change of one amplitude at t is expressed as an integral over T of the product of two amplitudes at t – T and a kernel functionf(T); two generalizations of Falk & Tsytovich's form (f(T) ∝ T) that satisfy the requirement f(∞) = 0 are identified, (ii) It is shown that the low-frequency or beat disturbance may be described in terms of fluctuations in the electron number density, and that its time evolution involves an operator that is essentially the inverse of f(t). (iii) The transition from oscillatory evolution in the reactive or ‘coherent-wave’ version of the three-wave instability to the secular evolution of the resistive or ‘random-phase’ version is discussed qualitatively.


1982 ◽  
Vol 28 (1) ◽  
pp. 93-101
Author(s):  
Sanjay Kumar Ghosh

Starting from the two-fluid model hydrodynamic equations, a dispersion relation is obtained for wave propagation through a two-temperature plasma perpendicular to the direction of the spatially uniform external magnetic field B0cosω0t and several excitation conditions are deduced.


2009 ◽  
Vol 76 (1) ◽  
pp. 7-17 ◽  
Author(s):  
BENGT ELIASSON ◽  
PADMA KANT SHUKLA

AbstractWe present a derivation of the dispersion relation for electrostatic oscillations in a zero-temperature quantum plasma, in which degenerate electrons are governed by the Wigner equation, while non-degenerate ions follow the classical fluid equations. The Poisson equation determines the electrostatic wave potential. We consider parameters ranging from semiconductor plasmas to metallic plasmas and electron densities of compressed matter such as in laser compression schemes and dense astrophysical objects. Owing to the wave diffraction caused by overlapping electron wave function because of the Heisenberg uncertainty principle in dense plasmas, we have the possibility of Landau damping of the high-frequency electron plasma oscillations at large enough wavenumbers. The exact dispersion relations for the electron plasma oscillations are solved numerically and compared with the ones obtained by using approximate formulas for the electron susceptibility in the high- and low-frequency cases.


2016 ◽  
Vol 82 (6) ◽  
Author(s):  
E. Tassi ◽  
P. L. Sulem ◽  
T. Passot

Reduced models are derived for a strongly magnetized collisionless plasma at scales which are large relative to the electron thermal gyroradius and in two asymptotic regimes. One corresponds to cold ions and the other to far sub-ion scales. By including the electron pressure dynamics, these models improve the Hall reduced magnetohydrodynamics (MHD) and the kinetic Alfvén wave model of Boldyrev et al. (2013 Astrophys. J., vol. 777, 2013, p. 41), respectively. We show that the two models can be obtained either within the gyrofluid formalism of Brizard (Phys. Fluids, vol. 4, 1992, pp. 1213–1228) or as suitable weakly nonlinear limits of the finite Larmor radius (FLR)–Landau fluid model of Sulem and Passot (J. Plasma Phys., vol 81, 2015, 325810103) which extends anisotropic Hall MHD by retaining low-frequency kinetic effects. It is noticeable that, at the far sub-ion scales, the simplifications originating from the gyroaveraging operators in the gyrofluid formalism and leading to subdominant ion velocity and temperature fluctuations, correspond, at the level of the FLR–Landau fluid, to cancellation between hydrodynamic contributions and ion finite Larmor radius corrections. Energy conservation properties of the models are discussed and an explicit example of a closure relation leading to a model with a Hamiltonian structure is provided.


Author(s):  
Daniele L. Marchisio ◽  
Marco Vanni ◽  
Antonello A. Barresi ◽  
Giancarlo Baldi

Multiphase systems, such as sprays and aerosols, are characterized by the existence of a continuous primary phase and a disperse secondary phase. The interaction between the two phases and/or the chemical reactions can affect both composition and characteristic velocity of the primary and secondary phases, as well as the size distribution of the secondary phase. In order to describe these systems, the continuity, mass balance and momentum balance equations as well as additional equations for turbulence, must be solved. Nevertheless if there is the need to account for the evolution of the secondary phase because of continuous and discrete events the population balance equation must be solved. In this work two very efficient ways to cope with these issues will be presented. In particular the use of the quadrature method of moments coupled with the mixture multiphase model, and the multi-fluid model will be presented and discussed.


2017 ◽  
Vol 72 (10) ◽  
pp. 915-921 ◽  
Author(s):  
A. Rasheed ◽  
M. Jamil ◽  
Young-Dae Jung ◽  
A. Sahar ◽  
M. Asif

AbstractJeans instability with magnetosonic perturbations is discussed in quantum dusty magnetoplasmas. The quantum and smaller thermal effects are associated only with electrons. The quantum characteristics include exchange-correlation potential, recoil effect, and Fermi degenerate pressure. The multifluid model of plasmas is used for the analytical study of this problem. The significant contribution of electron exchange is noticed on the threshold value of wave vector and Jeans instability. The presence of electron exchange and correlation effects reduce the time to stabilise the phenomenon of self-gravitational collapse of massive species. The results of Jeans instability by magnetosonic perturbations at quantum scale help to disclose the details of the self-gravitating dusty magnetoplasma systems.


Sign in / Sign up

Export Citation Format

Share Document