Synthesis g-C3N4 of high specific surface area by precursor pretreatment strategy with SBA-15 as a template and their photocatalytic activity toward degradation of rhodamine B

2018 ◽  
Vol 194 (3) ◽  
pp. 229-235 ◽  
Author(s):  
Jie Zhang ◽  
Tianfeng Cai ◽  
Huipeng Li ◽  
Hua Zhao
Jurnal Kimia ◽  
2020 ◽  
pp. 82
Author(s):  
D. A. D. N. Dewi ◽  
I N. Simpen ◽  
I W. Suarsa

A montmorillonite clay modified with semiconductor metal can act as a photocatalyst material. Montmorillonite clays were chosen because of their natural characteristics which are easily to be modified and have high specific surface area. This research aims to modify montmorillonite clay into photocatalyst material. The montmorillonite clay was intercalated using Fe2O3 to produce Fe2O3-pillared montmorillonite clay, then doped with TiO2 to form a photocatalyst material Fe2O3-PILC / TiO2. Modifications were intended to increase the specific surface area and number of active photocatalyst sites and thus increase the ability of photodegradation. The characterization carried out included characterizing the pillar formation using X-ray Diffraction (XRD), specific surface area by the BET method (Bruneau, Emmet, and Teller), a the number of surface acid-base sites by the titration method. Photocatalyst with the best character was Fe2O3-PILC / TiO2 1: 3 with specific surface area, number of acid and base sites respectively 45,947 m2/g, 20,1736 x 1023 sites/gram and 19,0044 x 1023 sites/gram. The result of photodegradation at optimum condition with visible light at pH 3 using 400 mg photocatalyst was 99.84%.   Keywords: photocatalyst, Fe2O3, montmorillonite clay, TiO2, rhodamine B


Author(s):  
E. Krushel'nickaya

Based on the change in the color of an organic dye – rhodamine B, on the surface of concrete under the action of ultraviolet radiation, a theoretical and experimental assessment of the photocatalytic activity of concrete was carried out. Photocatalytic activity was calculated using the obtained coordinates of colorimetry L * a * b *. To assess the performance of the photocatalyst over time, a test was carried out with concrete samples at the age of 7 and 28 days. Titanium dioxide of three types of anatase modification of a foreign manufacturer was used as a photocatalyst in the study. It is shown that the introduction of titanium dioxide into concrete promotes self-cleaning of its surface. The values of discoloration of the dye on the concrete surface were obtained depending on its composition and on the time of exposure to ultraviolet radiation. It was determined that the value of the specific surface area of titanium dioxide affects the photocatalytic activity. It is noted that with the age of concrete samples, there is a noticeable decrease in phototransformation. It was also found that the high specific surface area of titanium dioxide allows it to exhibit its photocatalytic properties over time.


2013 ◽  
Vol 761 ◽  
pp. 35-39
Author(s):  
Se Keun Park ◽  
Jun Ho Eun ◽  
Hyun Ho Shin

Nitrogen doping can be achieved by heating TiO2-based photocatalyst powders under dopant-generating atmospheres such as NH3. In the present work, metatitanic acid (MTA) powder was used as a raw material to obtain nitrogen-doped titania using heat treatment in NH3flow. MTA is an industrially available intermediate product in sulfate process for TiO2production, which is mesoporous material with high specific surface area. The MTA powder was heat-treated in flowing NH3at 400–550°C. For comparison, commercial P25 TiO2powder was heat-treated under the same conditions. The results show that nitrogen dopant can be successfully incorporated into the MTA by heating in NH3 atmosphere. This obviously results in the enhanced visible-light photocatalytic activity, especially in MTA sample heated at 400°C. Due to the fascinating properties of MTA powder such as high specific surface area, the N-doping effect on MTA powder is much higher than the P25 TiO2powder.


2017 ◽  
Vol 46 (7) ◽  
pp. 2310-2321 ◽  
Author(s):  
Lianwei Shan ◽  
Yuteng Liu ◽  
Hongtao Chen ◽  
Ze Wu ◽  
Zhidong Han

We prepared α-Bi2O3/BiOBr core–shell heterojunction via a facile in situ chemical transformation method. The prepared α-Bi2O3/BiOBr photocatalyst is characteristic of porous and high specific surface area, and shows high photocatalytic activity.


2017 ◽  
Vol 41 (20) ◽  
pp. 11640-11646 ◽  
Author(s):  
Bikramjeet Singh ◽  
Gurpreet kaur ◽  
Paviter Singh ◽  
Kulwinder Singh ◽  
Jeewan Sharma ◽  
...  

Boron nitride and titanium oxide composite (BN–TiO2) photocatalyst endowed with high specific surface area and large pore size was synthesized by ice bath method.


Sign in / Sign up

Export Citation Format

Share Document