Experimental and finite element analysis of ultrasonic vibration−assisted continuous-wave laser surface drilling

2016 ◽  
Vol 32 (2) ◽  
pp. 216-225 ◽  
Author(s):  
S. Habib Alavi ◽  
Cody Cowell ◽  
Sandip P. Harimkar
2007 ◽  
Vol 539-543 ◽  
pp. 2651-2656 ◽  
Author(s):  
C.J. Huang ◽  
E. Ghassemieh

A 3-D coupled temperature-displacement finite element analysis is performed to study an ultrasonic consolidation process. Results show that ultrasonic wave is effective in causing deformation in aluminum foils. Ultrasonic vibration leads to an oscillating stress field. The oscillation of stress in substrate lags behind the ultrasonic vibration by about 0.1 cycle of ultrasonic wave. The upper foil, which is in contact with the substrate, has the most severe deformation. The substrate undergoes little deformation. Apparent material softening by ultrasonic wave, which is of great concern for decades, is successfully simulated. The higher the friction coefficient, the more obvious the apparent material softening effect.


Author(s):  
L Hao ◽  
J Lawrence

A numerical technique has been employed to use the ABAQUS finite element analysis (FEA) package in order to simulate the CO 2 laser surface processing of a magnesia partially stabilized zirconia (MgO-PSZ) bioinert ceramic. The transient FEA takes into account the heat radiation, heat convection and phase change during the laser processing. The heat source has been modelled as a stepwise moving laser source with small steps in the scanning direction to approximate continuous movement. It further extends and validates numerical methods by comparing experimental data of surface temperature for laser surface processing of the MgO-PSZ to the solution from the FEA model. Experiments involving CO 2 laser surface melting of the MgO-PSZ were also carried out using various laser process parameters, and the measured melt width and depth of laser-treated tracks were used to evaluate the validity of the models. In order to prevent the crack formation in the laser processing, pre- and post-heating were proposed by using the scanning of laser beam with the lower power before and after laser processing with high power to lower the thermal gradient.


Author(s):  
Israt Rumana Kabir ◽  
Danqing Yin ◽  
Nusrat Tamanna ◽  
Sumsun Naher

Ti64 alloy plays a significant role in the biomedical applications such as bioimplants for its excellent biocompatibility. Its usage can be further extended by improving the surface hardness and wear resistance. In this respect, laser surface glazing (LSG), an advanced surface modification technique, is very useful which can produce thin hardened surface layer and strong metallurgical bonding. Investigation of temporal and spatial temperature distributions of laser glazed surface of materials are essential because temperature plays significant role in achieving required surface properties. Therefore, in this study, a 3D Finite element analysis has been developed to perform transient thermal analysis of LSG for Ti64 alloy. The model investigated temperature distribution, depth of modified zone and heating and cooling. The results show that the peak temperature is attained 2095 K for 300 W laser power, 0.2 mm beam width and 0.15 ms residence time. Since this temperature is above the melting point (1933 K) of Ti64 alloy, the melt depth is calculated 22.5 μm. Furthermore, from the simulation results, the average heating and cooling rates are estimated 1.19×107 Ks-1 and 2.71×106 Ks-1 respectively which indicate the presence of hard phases in the modified zone.


2018 ◽  
Vol 150 ◽  
pp. 04002
Author(s):  
Rasidi Ibrahim ◽  
Haris Rachmat ◽  
Damayanti Dida ◽  
Anis Radzi ◽  
Tatang Mulyana

Finite element analysis for piezoelectric actuator has been developed in Ansys Software which are a program that can analyses and simulate the dynamic behaviour of piezoelectric. The Ultrasonic Vibration assisted Milling (UVAM) experimental having a difficulty to investigate the effect of vibration mechanism where existence of error in material, mechanism and attachment of piezoelectric thus affect the amplitude and frequency of mechanical compliance during the machining of UVAM. This paper will investigate the modelling of piezoelectric compliance and follow the procedures of FEA to accurately predict the dynamic behaviour of compliance. The parameters for simulation of piezoelectric are voltage, electromechanical coupling and frequency. The compliance mechanism is model by using SolidWorks 2014 and imported to Ansys Mechanical APDL Software were the piezoelectric are embedded on the mechanism. Modal analysis and harmonic analysis has been used in order to obtain the mode shape and displacement. The displacement of the compliance mechanism will be compare between simulation and experimental. The dynamic behaviour was discussed in simulation to study the reliability of the compliance mechanism before it safely used in UVAM.


Sign in / Sign up

Export Citation Format

Share Document