3D Coupled Thermomechanical Finite Element Analysis of Ultrasonic Consolidation

2007 ◽  
Vol 539-543 ◽  
pp. 2651-2656 ◽  
Author(s):  
C.J. Huang ◽  
E. Ghassemieh

A 3-D coupled temperature-displacement finite element analysis is performed to study an ultrasonic consolidation process. Results show that ultrasonic wave is effective in causing deformation in aluminum foils. Ultrasonic vibration leads to an oscillating stress field. The oscillation of stress in substrate lags behind the ultrasonic vibration by about 0.1 cycle of ultrasonic wave. The upper foil, which is in contact with the substrate, has the most severe deformation. The substrate undergoes little deformation. Apparent material softening by ultrasonic wave, which is of great concern for decades, is successfully simulated. The higher the friction coefficient, the more obvious the apparent material softening effect.

2019 ◽  
Vol 943 ◽  
pp. 43-47
Author(s):  
Xia Zhu ◽  
Keiji Ogi ◽  
Nagatoshi Okabe

The purpose of this research is to determine the state inside the material using finite-element analysis and to improve the performance of a rotary-draw bending forming by clarifying the mechanism of wrinkle generation. An analytical model of rotational drawing was made by using the general-purpose nonlinear finite-element analysis software MSC Marc, and the analytical results were compared with experimental results to verify the validity of the model. Furthermore, the mechanism of wrinkle generation was investigated. With the progress of processing, wrinkles occur not in the R part but in the original tube-side straight-tube part. The coefficient of friction between the tube material and the R portion of the bending mold promotes the occurrence of wrinkles and the growth of the generated wrinkles. Because wrinkles occur even if the friction coefficient between the tube material and bending mold R part is ignored, the generation condition of wrinkles also depends on parameters other than the friction coefficient.


2015 ◽  
Vol 12 (12) ◽  
pp. 5139-5143
Author(s):  
Xiangguo Zhai ◽  
Fu Zhang ◽  
Hongwei Zhao ◽  
Cong Li ◽  
Zhaoxin Xu ◽  
...  

2014 ◽  
Vol 621 ◽  
pp. 195-201
Author(s):  
Surangsee Dechjarern ◽  
Maitri Kamonrattanapisut

Sheet metal deep-draw die is primarily constructed with draw bead, which is then modified based on trial and error to obtain a successful forming without splitting. This work aims at a robust design of forming die using numerical analysis and the Taguchi method. A three dimensional elastoplastic finite element model of a sheet metal forming process of SPCEN steel has been successfully developed using the material flow stress obtained from the modified Erichsen cup test. The model was validated with the actual forming experiment and the results agreed well. The influence of draw bead parameters on splitting and thinning distributions were examined using the Taguchi method. Four parameters, namely the friction coefficient, draw bead height, radius and shoulder radius were investigated. The Taguchi main effect analysis and ANOVA results show that the height and shoulder radius of the draw bead are the most important factor influencing the thinning distribution. Applying the Taguchi method and using the minimum thinning percentage as the design criteria, the optimum die design was identified as height, radius, shoulder radius and the friction coefficient of 4, 8, 8 mm and 0.125 respectively. The verified finite element model using the optimum die design was conducted. The predicted Taguchi response was within 5.9% from finite element analysis prediction. The improvement in the reduction of thinning percentage was 22.35%.


2018 ◽  
Vol 32 (19) ◽  
pp. 1840043
Author(s):  
J. O. Yu ◽  
Y. H. Kim ◽  
Nagamachi Takuo

To eliminate the complexity of curvature extrusion process, a new extrusion method was proposed. In this study, a finite element analysis for curvature extrusion was studied to commercialize this extrusion method that creates curvature in a tilting method. When simulating an extrusion process, it is important to fix the appropriate friction coefficient and fillet value to avoid peel-out problems such that the finite element disappears. Therefore, the actual extrusion results and the simulated results were compared to find conditions that the element would not disappear. There was a good agreement between the simulation and experimental results when the coefficient friction was 0.4 and the fillet was 0.4 mm.


2011 ◽  
Vol 314-316 ◽  
pp. 653-656 ◽  
Author(s):  
Li Zhi Wen ◽  
Zhi Wei Guan ◽  
Jian Feng Song ◽  
Yue Chen

In this paper, the model of the engine connection rod is founded by use of UG, and then joined in the ANSYS, applied the Multiphysics module and static structuer analysis function, we can count the stress field of the connection rod and accomplish the evaluate of the mechanical load.


2011 ◽  
Vol 311-313 ◽  
pp. 906-909 ◽  
Author(s):  
Jing Pei Xie ◽  
Ai Qin Wang ◽  
Wen Yan Wang ◽  
Ji Wen Li ◽  
Di Xin Yang ◽  
...  

The influences of non-metallic inclusions on the quality and properties of the steel not only depended on the quantity of inclusions, but also on the type、shape、size、deformation behavior and distribution condition. By means of ANSYS finite element analysis software, the stress field distribution in the inclusions and the matrix around the inclusions are analyzed under the condition of different kinds of types、shapes、distributions with changeable load in heavy rudder arm steel castings, then micromechanics behavior of inclusions is investigated from angle of macro mechanics.


2011 ◽  
Vol 121-126 ◽  
pp. 473-477
Author(s):  
Shu Qin Zhang ◽  
Xin Hua Ni ◽  
Xie Quan Liu ◽  
Ying Chen Ma

According to microstructures in eutectic composite ceramic, the finite element model of composite with eutectic interphase is established. The mechanical stress field of eutectic composite ceramic containing lamellae is simulated. APDL programming in ANSYS is used to analyze the damage process of eutectic composite ceramic. Results show that the failure of eutectic composite ceramic is determined by the damage of matrix. As load is increasing, the damage will elongate along the interphase and extend to the internal of matrix. At last the damage arouses matrix fracture.


Sign in / Sign up

Export Citation Format

Share Document