Absorption and Reaction Kinetics of Amines and Ammonia Solutions with Carbon Dioxide in Flue Gas

2003 ◽  
Vol 53 (2) ◽  
pp. 246-252 ◽  
Author(s):  
Chia Hao Hsu ◽  
Hsin Chu ◽  
Chorng Ming Cho
Author(s):  
Anton Petukhov ◽  
Artem Atlaskin ◽  
Maria Sergeeva ◽  
Sergey Kryuchkov ◽  
Dmitry Shablykin ◽  
...  

2016 ◽  
Vol 33 ◽  
pp. 186-195 ◽  
Author(s):  
Abdelbaki Benamor ◽  
Mohammed Jaber Al-Marri ◽  
Majeda Khraisheh ◽  
Mustafa S. Nasser ◽  
Paitoon Tontiwachwuthikul

Author(s):  
Malik Šehović ◽  
Lars Robben ◽  
Thorsten M. Gesing

AbstractWe report on the phase transformation and the reaction kinetics of aluminosilicate nitrite-sodalite |Na


2014 ◽  
Vol 33 (4) ◽  
pp. 319-323 ◽  
Author(s):  
Jun-Hao Liu ◽  
Guo-Hua Zhang ◽  
Kuo-Chih Chou

AbstractCarbon dioxide is a greenhouse gas and substantially affects the global warming and climate change, so study on the adsorption of carbon dioxide is very urgent. As a new CO2 captor, Ba2Fe2O5 was prepared by the solid state reaction of Fe2O3 with BaCO3, following formula Fe2O3 + 2BaCO3 = Ba2Fe2O5 + 2CO2. The reaction kinetics in isothermal condition was investigated by using the method of thermo-gravimetric analyzer (TGA). It was found that the reaction of Fe2O3 with BaCO3 was controlled by the diffusion step in the product layer, and the kinetics process could be described by the RPP model (Real Physical Picture) with the apparent activation energy extracted to be 161.122 kJ/mol.


Author(s):  
Yi Zhao ◽  
Liu Feng ◽  
Guo Tianxiang ◽  
Zhao Yin

Experiments of simultaneous removal of SO2 and NO from simulated flue gas, using NaClO2 solution as the absorbent, were carried out in a self-designed bubble reactor, and removal efficiencies of 100 percent for SO2 and 95.2 percent for NO were obtained under the optimal experimental conditions. The mechanism of simultaneous removal of SO2 and NO using NaClO2 acid solutions was proposed by analyzing the removal products. The reaction kinetics for simultaneous desulfurization and denitrification were investigated, and the results indicated that the oxidation-absorption processes of SO2 and NO were divided into two zones, as the fast and slow reaction zones. In the slow reaction zones, both were zero order reactions, and in the fast reaction zones, the reaction order, rate constant and activation energy of SO2 removal reaction with absorbent were 1.4, 1.22 (mol L-1)-0.4 s-1 and 66.25 kJ mol-1, respectively, and 2, 3.15×103 (mol L-1)-1 s-1, and 42.50 kJ mol-1 for NO removal reaction, respectively.


2011 ◽  
Vol 133 (43) ◽  
pp. 17395-17405 ◽  
Author(s):  
Fabian Jutz ◽  
Antoine Buchard ◽  
Michael R. Kember ◽  
Siw Bodil Fredriksen ◽  
Charlotte K. Williams

Sign in / Sign up

Export Citation Format

Share Document