scholarly journals Cephalopod Muscle Structure and Other Musings

2021 ◽  
Vol 30 (8) ◽  
pp. 915-915
Author(s):  
Christina DeWitt
Keyword(s):  
2020 ◽  
Vol 118 (3) ◽  
pp. 258a
Author(s):  
Laszlo Csernoch ◽  
Mónika Gönczi ◽  
Zsolt Ráduly ◽  
László Szabó ◽  
Nóra Dobrosi ◽  
...  

2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Hiroaki Ochi ◽  
Hitoshi Kino ◽  
Kenji Tahara ◽  
Yuki Matsutani

2001 ◽  
Vol 384 ◽  
pp. 250-264 ◽  
Author(s):  
Marina R. Makarov ◽  
Ludmila N. Kochutina ◽  
Mikhail L. Samchukov ◽  
John G. Birch ◽  
Robert D. Welch
Keyword(s):  

2013 ◽  
Vol 114 (4) ◽  
pp. 472-481 ◽  
Author(s):  
Heidi Kletzien ◽  
John A. Russell ◽  
Glen E. Leverson ◽  
Nadine P. Connor

Age-associated changes in tongue muscle structure and strength may contribute to dysphagia in elderly people. Tongue exercise is a current treatment option. We hypothesized that targeted tongue exercise and nontargeted exercise that activates tongue muscles as a consequence of increased respiratory drive, such as treadmill running, are associated with different patterns of tongue muscle contraction and genioglossus (GG) muscle biochemistry. Thirty-one young adult, 34 middle-aged, and 37 old Fischer 344/Brown Norway rats received either targeted tongue exercise, treadmill running, or no exercise (5 days/wk for 8 wk). Protrusive tongue muscle contractile properties and myosin heavy chain (MHC) composition in the GG were examined at the end of 8 wk across groups. Significant age effects were found for maximal twitch and tetanic tension (greatest in young adult rats), MHCIIb (highest proportion in young adult rats), MHCIIx (highest proportion in middle-aged and old rats), and MHCI (highest proportion in old rats). The targeted tongue exercise group had the greatest maximal twitch tension and the highest proportion of MHCI. The treadmill running group had the shortest half-decay time, the lowest proportion of MHCIIa, and the highest proportion of MHCIIb. Fatigue was significantly less in the young adult treadmill running group and the old targeted tongue exercise group than in other groups. Thus, tongue muscle structure and contractile properties were affected by both targeted tongue exercise and treadmill running, but in different ways. Studies geared toward optimizing dose and manner of providing targeted and generalized tongue exercise may lead to alternative tongue exercise delivery strategies.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Joshua Mattock ◽  
Julie R. Steele ◽  
Karen J. Mickle

Abstract Background Medial tibial stress syndrome (MTSS) is a common lower leg injury experienced by runners. Although numerous risk factors are reported in the literature, many are non-modifiable and management of the injury remains difficult. Lower leg muscle structure and function are modifiable characteristics that influence tibial loading during foot-ground contact. Therefore, this study aimed to determine whether long-distance runners with MTSS displayed differences in in vivo lower leg muscle structure and function than matched asymptomatic runners. Methods Lower leg structure was assessed using ultrasound and a measure of lower leg circumference to quantify muscle cross-sectional area, thickness and lean lower leg girth. Lower leg function was assessed using a hand-held dynamometer to quantify maximal voluntary isometric contraction strength and a single leg heel raise protocol was used to measure ankle plantar flexor endurance. Outcome variables were compared between the limbs of long-distance runners suffering MTSS (n = 20) and matched asymptomatic controls (n = 20). Means, standard deviations, 95 % confidence intervals, mean differences and Cohen’s d values were calculated for each variable for the MTSS symptomatic and control limbs. Results MTSS symptomatic limbs displayed a significantly smaller flexor hallucis longus cross-sectional area, a smaller soleus thickness but a larger lateral gastrocnemius thickness than the control limbs. However, there was no statistical difference in lean lower leg girth. Compared to the matched control limbs, MTSS symptomatic limbs displayed deficits in maximal voluntary isometric contraction strength of the flexor hallucis longus, soleus, tibialis anterior and peroneal muscles, and reduced ankle plantar flexor endurance capacity. Conclusions Differences in lower leg muscle structure and function likely render MTSS symptomatic individuals less able to withstand the negative tibial bending moment generated during midstance, potentially contributing to the development of MTSS. The clinical implications of these findings suggest that rehabilitation protocols for MTSS symptomatic individuals should aim to improve strength of the flexor hallucis longus, soleus, tibialis anterior and peroneal muscles along with ankle plantar flexor endurance. However, the cross-sectional study design prevents us determining whether between group differences were a cause or effect of MTSS. Therefore, future prospective studies are required to substantiate the study findings.


2021 ◽  
pp. 2100137
Author(s):  
Jeroen L.M. van Doorn ◽  
Francesca Pennati ◽  
Hendrik H.G. Hansen ◽  
Baziel G.M. van Engelen ◽  
Andrea Aliverti ◽  
...  

Respiratory muscle weakness is common in neuromuscular disorders and leads to significant respiratory difficulties. Therefore, reliable and easy assessment of respiratory muscle structure and function in neuromuscular disorders is crucial. In the last decade, ultrasound and MRI emerged as promising imaging techniques to assess respiratory muscle structure and function. Respiratory muscle imaging directly measures the respiratory muscles and, in contrast to pulmonary function testing, is independent of patient effort. This makes respiratory muscle imaging suitable to use as tool in clinical respiratory management and as outcome parameter in upcoming drug trials for neuromuscular disorders, particularly in children. In this narrative review, we discuss the latest studies and technological developments in imaging of the respiratory muscles by US and MR, and its clinical application and limitations. We aim to increase understanding of respiratory muscle imaging and facilitate its use as outcome measure in daily practice and clinical trials.


2001 ◽  
Vol 41 (supplement) ◽  
pp. S50
Author(s):  
S. Fufiwara ◽  
Y. Takezawa ◽  
Y. Sugimoto ◽  
K. Wakabayashi

Sign in / Sign up

Export Citation Format

Share Document