Evolution and Phylogenetic Information Content of Mitochondrial Genomic Structural Features Illustrated with Acrodont Lizards

2000 ◽  
Vol 49 (2) ◽  
pp. 257-277 ◽  
Author(s):  
J. Robert MacEy, James A. Schulte II,
2022 ◽  
Author(s):  
Diego Sasso Porto ◽  
Wasila Dahdul ◽  
Hilmar Lapp ◽  
James Balhoff ◽  
Todd Vision ◽  
...  

Morphology remains a primary source of phylogenetic information for many groups of organisms, and the only one for most fossil taxa. Organismal anatomy is not a collection of randomly assembled and independent "parts", but instead a set of dependent and hierarchically nested entities resulting from ontogeny and phylogeny. How do we make sense of these dependent and at times redundant characters? One promising approach is using ontologies---structured controlled vocabularies that summarize knowledge about different properties of anatomical entities, including developmental and structural dependencies. Here we assess whether the proximity of ontology-annotated characters within an ontology predicts evolutionary patterns. To do so, we measure phylogenetic information across characters and evaluate if it is hierarchically structured by ontological knowledge---in much the same way as phylogeny structures across-species diversity. We implement an approach to evaluate the Bayesian phylogenetic information (BPI) content and phylogenetic dissonance among ontology-annotated anatomical data subsets. We applied this to datasets representing two disparate animal groups: bees (Hexapoda: Hymenoptera: Apoidea, 209 chars) and characiform fishes (Actinopterygii: Ostariophysi: Characiformes, 463 chars). For bees, we find that BPI is not substantially structured by anatomy since dissonance is often high among morphologically related anatomical entities. For fishes, we find substantial information for two clusters of anatomical entities instantiating concepts from the jaws and branchial arch bones, but among-subset information decreases and dissonance increases substantially moving to higher-level subsets in the ontology. We further applied our approach to addressing particular evolutionary hypotheses with an example of morphological evolution in miniature fishes. While we show that ontology does indeed structure phylogenetic information, additional relationships and processes, such as convergence, likely play a substantial role in explaining BPI and dissonance, and merit future investigation. Our work demonstrates how complex morphological datasets can be interrogated with ontologies by allowing one to access how information is spread hierarchically across anatomical concepts, how congruent this information is, and what sorts of processes may structure it: phylogeny, development, or convergence.


2019 ◽  
Vol 77 (2) ◽  
pp. 231-242 ◽  
Author(s):  
Eva Quandt ◽  
Mariana P. C. Ribeiro ◽  
Josep Clotet

AbstractRegulation of cell division is orchestrated by cyclins, which bind and activate their catalytic workmates, the cyclin-dependent kinases (CDKs). Cyclins have been traditionally defined by an oscillating (cyclic) pattern of expression and by the presence of a characteristic “cyclin box” that determines binding to the CDKs. Noteworthy, the Human Genome Sequence Project unveiled the existence of several other proteins containing the “cyclin box” domain. These potential “cyclins” have been named new, orphan or atypical, creating a conundrum in cyclins nomenclature. Moreover, although many years have passed after their discovery, the scarcity of information regarding these possible members of the family has hampered the establishment of criteria for systematization. Here, we discuss the criteria that define cyclins and we propose a classification and nomenclature update based on structural features, interactors, and phylogenetic information. The application of these criteria allows to systematically define, for the first time, the subfamily of atypical cyclins and enables the use of a common nomenclature for this extended family.


Zootaxa ◽  
2009 ◽  
Vol 2236 (1) ◽  
pp. 26-36 ◽  
Author(s):  
VAN WALLACH ◽  
WOLFGANG WÜSTER ◽  
DONALD G. BROADLEY

The genus Naja Laurenti, 1768, is partitioned into four subgenera. The typical form is restricted to 11 Asian species. The name Uraeus Wagler, 1830, is revived for a group of four non-spitting cobras inhabiting savannas and open formations of Africa and Arabia, while Boulengerina Dollo, 1886, is applied to four non-spitting African species of forest cobras, including terrestrial, aquatic and semi-fossorial forms. A new subgenus is erected for seven species of African spitting cobras. We recommend the subgenus rank as a way of maximising the phylogenetic information content of classifications while retaining nomenclatural stability.


Sign in / Sign up

Export Citation Format

Share Document