Long-Term Changes in Nutrient Loading and Stoichiometry and Their Relationships with Changes in the Food Web and Dominant Pelagic Fish Species in the San Francisco Estuary, California

2010 ◽  
Vol 18 (2) ◽  
pp. 211-232 ◽  
Author(s):  
Patricia M. Glibert
2007 ◽  
Vol 64 (4) ◽  
pp. 723-734 ◽  
Author(s):  
Frederick Feyrer ◽  
Matthew L Nobriga ◽  
Ted R Sommer

We examined a 36-year record of concurrent midwater trawl and water quality sampling conducted during fall to evaluate habitat trends for three declining fish species in the San Francisco Estuary, California, USA: delta smelt (Hypomesus transpacificus), striped bass (Morone saxatilis), and threadfin shad (Dorosoma petenense). Generalized additive modeling revealed that Secchi depth and specific conductance were important predictors of occurrence for delta smelt and striped bass, while specific conductance and water temperature were important for threadfin shad. Habitat suitability derived from model predictions exhibited significant long-term declines for each species; the southeastern and western regions of the estuary exhibited the most dramatic changes. Declines in habitat suitability were associated with anthropogenic modifications to the ecosystem. For delta smelt, an imperiled annual species endemic to the estuary, the combined effects of fall stock abundance and water quality predicted recruit abundance during recent years of chronically low food supply. Our results are consistent with existing evidence of a long-term decline in carrying capacity for delta smelt and striped bass and demonstrate the utility of long-term data sets for evaluating relationships between fish and their habitat.


1993 ◽  
Vol 115 (3) ◽  
pp. 481-493 ◽  
Author(s):  
S. C. Wainright ◽  
M. J. Fogarty ◽  
R. C. Greenfield ◽  
B. Fry

1999 ◽  
Vol 56 (11) ◽  
pp. 2167-2171 ◽  
Author(s):  
Brian Fry

Stable C and N isotope measurements of the clam Potamocorbula amurensis were used to help identify watershed-level differences in food webs of San Francisco Bay. Potamocorbula amurensis has become widely distributed in San Francisco Bay since introduction from Asia in1986. Clam samples were collected from both the river-influenced northern arm of San Francisco Bay and the lagoonal southern arm of the Bay during 1990-1991. Carbon isotopic compositions of clams responded primarily to riverine inputs and provided an index of hydrologic mixing across the estuarine system. Nitrogen isotopic compositions of clams were more responsive to watershed nutrient loading, with higher δ15N values found in South Bay, which receives stronger inputs of anthropogenic N. Routine monitoring of animal consumer isotopic compositions could be an effective way to detect long-term watershed-level changes in C and N dynamics important for secondary production in aquatic systems.


2021 ◽  
pp. 148-171
Author(s):  
Trishelle L. Tempel ◽  
Timothy D. Malinich ◽  
Jillian Burns ◽  
Arthur Barros ◽  
Christina E. Burdi ◽  
...  

2018 ◽  
Vol 9 (2) ◽  
pp. 467-485
Author(s):  
Joseph E. Kirsch ◽  
Julie L. Day ◽  
James T. Peterson ◽  
David K. Fullerton

Abstract Fish monitoring programs often rely on the collection, species identification, and counting of individual fish over time to inform natural resource management decisions. Thus, the utility of the data used to inform these decisions can be negatively affected by species misidentification. Fish species misidentification bias can be minimized by confirming identification using genetic techniques, training observers, or adjusting monitoring data using estimates of incomplete detection and false-positive misidentification. Despite the existence of well-established fish identification training and quality control programs, there is considerable uncertainty about fish species false-positive misidentification rates and the effectiveness of fish identification training programs within the San Francisco Estuary. We evaluated the misidentification of fish species among Delta Juvenile Fish Monitoring Program observers by conducting five fish identification exams under controlled conditions at the Lodi Fish and Wildlife Office in Lodi, California, between 2012 and 2014. To assess the variability in false-positive misidentification, we fitted data to species and observer characteristics using hierarchical logistic regression. We found that fish species misidentification was fairly common, averaging 17% among 155 test specimens and 32 observers. False-positive misidentification varied considerably among species and was negatively related to fish size, the abundance of the species within monitoring samples, and observer experience. In addition, observers who were not formally trained or used as full-time observers were, on average, 6.0 times more likely to falsely identify a species. However, false-positive misidentification rates among observers and specimens still varied considerably after controlling for observer experience and training, and species and size, respectively. Our results could be used to improve fish identification training and testing, increase the accuracy of fish occupancy or abundance estimation, and justify the allocation of resources to continually use and formally train full-time observers within long-term monitoring programs operating in the system.


Sign in / Sign up

Export Citation Format

Share Document