Development of validated RP HPLC method with fluorescence detection for simultaneous quantification of sacubitril and valsartan from rat plasma

2018 ◽  
Vol 41 (5) ◽  
pp. 246-252 ◽  
Author(s):  
Mahesh Attimarad ◽  
Sree Harsha Nagaraja ◽  
Anroop Balachandran Nair ◽  
Bandar Essa Aldhubaib ◽  
Venugopala Narayanaswamy Katharigatta
Bioanalysis ◽  
2021 ◽  
Author(s):  
Bharath S Padya ◽  
Aswathi R Hegde ◽  
Sadhana P Mutalik ◽  
Swati Biswas ◽  
Srinivas Mutalik

Aim: To develop a new sensitive RP-HPLC method for simultaneous estimation of 5-fluorouracil (5-FU) and sonidegib (SDG). Materials & methods: Analytical and bioanalytical methods for simultaneous quantification of 5-FU and SDG in bulk, nanoformulations and in rat plasma were developed and validated using a gradient elution technique. Results: Separation of the analytes was effected on a Luna® C18 LC column using a mobile mixture comprising acetonitrile and acidified water. 5-FU and SDG were extracted from plasma matrix using liquid–liquid extraction. The applicability of the method was verified through single-dose oral pharmacokinetic study in Wistar rats. Conclusion: The developed methods allow a specific, sensitive and steady analytical procedure for the simultaneous estimation of 5-FU and SDG in nanoformulations and biological matrix.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
J. Saroja ◽  
Anantha Lakshmi P.V. ◽  
Y. Rammohan ◽  
D. Divya Reddy

Abstract Background We describe a “stability-indicating liquid chromatography” technique for the estimation of dimethicone (DEC) and dicyclomine hydrochloride (DEH) in the established tablet formulations. Individual quantification of DEH and DEC was reported. But simultaneous quantification of DEH and DEC was lacking. DEH and DEC were analysed on an “XTerra C18 column (250 mm × 4.6 mm, 5 μm)” with the mobile phase solvent run isocratically with 0.1M K2HPO4-acetonitrile (55:45, v/v) on a flow speed of 1.0 mL/min. Results The chromatographic run period for the DEC and DEH assay was 6.0 min with retention times of 2.134 and 2.865 min, respectively. The method was validated for accuracy (99.453 to 100.417% and 99.703 to 100.303% recovery values for DEH and DEC, respectively), precision (RSV value 0.135% for DEC and 0.171% for DEH), linearity (5–15 μg/mL for DEH and 20–60 μg/mL for DEC), selectivity (no hinderance from excipients) and specificity (no hinderance from degradants) recovery. Conclusion The developed stability-indicating liquid chromatography process was well applied to established tablet formulations.


Author(s):  
Navya Sree K S ◽  
Swapnil J Dengale ◽  
Srinivas Mutalik ◽  
Krishnamurthy Bhat

Abstract Background Dronedarone HCl is an anti-arrhythmic drug indicated for atrial fibrillation. Dronedarone HCl(DRN) has a low solubility of 2 µg/mL and 4% bioavailability, thus it is formulated as co-amorphous system to enhance its solubility by using Quercetin(QCT) as coformer. Literature lacks a sensitive, accurate and economic method for simultaneous quantification of DRN and QCT in formulation. Objective To develop a RP-HPLC method for simultaneous estimation of DRN and QCT in DRN-QCT co-amorphous system. Method Co-amorphous system was prepared using solvent evaporation technique using DRN and QCT in 1:1 molar ratio. The separation was achieved on Purospher® STAR C18 (250 mm × 4.6 mm × 5 μm) column with mobile phase comprising of Acetonitrile and 25 mM phosphate buffer pH 3.6 (60:40, % v/v). Results DRN and QCT retained at 6.7 and 3.5 min, respectively. For both molecules, method was developed with a wide linearity range of 0.2–500 µg/mL. LOD for DRN was found to be 0.0013 and 0.0026 µg/mL for QCT. Also, LOQ for DRN was found to be 0.0041 and 0.0078 µg/mL for QCT. Conclusion Method was validated as per ICHQ2R1 guidelines for linearity, precision, accuracy, and robustness. The method was used in simultaneous quantification of DRN and QCT in co-amorphous samples. Highlights The method developed was used for the analysis of content uniformity and solubility samples of co-amorphous system, where the method was able to successfully quantify DRN and QCT. Low detection and quantification limits contribute to sensitivity of the method and wide linearity range assures the robust and precise quantification of molecules.


Bioanalysis ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 597-613
Author(s):  
Aml A Emam ◽  
Neven M Habib ◽  
Hamada M Mahmoud ◽  
Nada S Abdelwhab ◽  
Maha M Abdelrahman

Background: Olanzapine (OLZ) is one of most recommended drugs for the treatment of schizophrenia while metformin (MET) is the most commonly used hypoglycemic agent. Aim: Development and validation of two green, sensitive and accurate chromatographic methods for the simultaneous determination of OLZ along with the co-prescribed, MET. Materials & methods: TLC-densitometric method with a developing system consisting of methylene chloride:methanol:ethyl acetate:triethylamine (4:4:5:0.1, by volume) and a reversed-phase (RP)-HPLC method where the chromatographic separation was performed using ethanol:water mixture (50: 50, v/v) as a mobile phase. Results: TLC-densitometric method had linearity over concentration ranges of 160–4000 ng/band for OLZ and 150–4500 ng/band for MET, while RP-HPLC method was linear and validated over concentration range of 300–20000 ng/ml for OLZ and MET. Conclusion: Pharmacokinetic study was successfully performed and suggested the possibility of co-administration of MET with OLZ and their further formulation in one pharmaceutical preparation to enhance patient’s compliance.


Sign in / Sign up

Export Citation Format

Share Document