Experimental Investigation of the Effect of Using Ethanol-Blended Diesel Fuels on Engine Performance and Exhaust Emissions

2012 ◽  
Vol 30 (1) ◽  
pp. 100-113 ◽  
Author(s):  
H. Ertuğrul Arslan ◽  
D. Güneş ◽  
E. Şenveli ◽  
B. Doğru
2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Iraklis Zahos-Siagos ◽  
Dimitrios Karonis

Hydroprocessing of liquid biomass is a promising technology for the production of “second generation” renewable fuels to be used in transportation. Its products, normal paraffins, can be further hydrotreated for isomerization in order to improve their cold flow properties. The final product, usually referred to as “paraffinic diesel,” is a high cetane number, clean burning biofuel which is rapidly gaining popularity among researchers and the industry. Nevertheless, the costly isomerization step can be omitted if normal paraffins are to be directly mixed with conventional diesel in low concentrations. In this work, nonisomerized paraffinic diesel produced through hydrotreating of used cooking oil (hydrotreated used cooking oil (HUCO)) has been used in 4 blends (up to 40% v/v) with conventional diesel fuel. The blends’ properties have been assessed comparatively to European EN 590 and EN 15940 standards (concerning conventional automotive diesel fuels and paraffinic diesel fuels from synthesis or hydrotreatment, resp.). Furthermore, the HUCO blends have been used in a standard stationary diesel engine-generator set. The blends have been considered as “drop-in replacements” for standard diesel fuel. As such, no engine modifications took place whatsoever. The engine performance and exhaust emissions of steady-state operation have been examined in comparison with engine operation with the baseline conventional diesel fuel.


2019 ◽  
Vol 92 (5) ◽  
pp. 1406-1418 ◽  
Author(s):  
Ahmet Uyumaz ◽  
Bilal Aydoğan ◽  
Hamit Solmaz ◽  
Emre Yılmaz ◽  
Derya Yeşim Hopa ◽  
...  

Author(s):  
Sumita Debbarma ◽  
Rahul Dev Misra

The effect of iron (Fe) nanoparticles additive to biodiesel blend and diesel fuels in terms of engine performance and emission characteristics is experimentally investigated in a stationary diesel engine. A fuel additive INP is suspended in the neat diesel (D) and 20% palm biodiesel (PB) blend with diesel (PB20) using ultra-sonication process and these modified fuels are termed as D + 50Fe and PB20 + 50Fe, respectively. Experiments are conducted on a developed diesel experimental setup to evaluate the engine performance and exhaust emissions for the fuels, namely, D, PB20, D + 50Fe, and PB20 + 50Fe. Results indicate that the density, viscosity, and calorific value of the fuel blends tend to increase with the addition of nanoparticles in the blends. Brake thermal efficiency (BTE) gets enhanced by about 2.06% for PB20 + 50Fe and about 0.36% for D + 50Fe with respect to BTE of PB20 and D, respectively. Similarly, brake-specific fuel consumption (BSFC) is lowered by 2.71% for PB20 + 50Fe and by 1.55% for D + 50Fe. Emission of regulated parameters, i.e., hydrocarbon (HC), carbon monoxide (CO), and nitrogen oxides (NOx) emission, shows a reducing trend. Volumetric reduction in the emissions of HC by 3–6%, CO by 6–12%, and NOx by 4–11.16% is observed.


Sign in / Sign up

Export Citation Format

Share Document