scholarly journals Exhaust Emissions and Physicochemical Properties of Hydrotreated Used Cooking Oils in Blends with Diesel Fuel

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Iraklis Zahos-Siagos ◽  
Dimitrios Karonis

Hydroprocessing of liquid biomass is a promising technology for the production of “second generation” renewable fuels to be used in transportation. Its products, normal paraffins, can be further hydrotreated for isomerization in order to improve their cold flow properties. The final product, usually referred to as “paraffinic diesel,” is a high cetane number, clean burning biofuel which is rapidly gaining popularity among researchers and the industry. Nevertheless, the costly isomerization step can be omitted if normal paraffins are to be directly mixed with conventional diesel in low concentrations. In this work, nonisomerized paraffinic diesel produced through hydrotreating of used cooking oil (hydrotreated used cooking oil (HUCO)) has been used in 4 blends (up to 40% v/v) with conventional diesel fuel. The blends’ properties have been assessed comparatively to European EN 590 and EN 15940 standards (concerning conventional automotive diesel fuels and paraffinic diesel fuels from synthesis or hydrotreatment, resp.). Furthermore, the HUCO blends have been used in a standard stationary diesel engine-generator set. The blends have been considered as “drop-in replacements” for standard diesel fuel. As such, no engine modifications took place whatsoever. The engine performance and exhaust emissions of steady-state operation have been examined in comparison with engine operation with the baseline conventional diesel fuel.

Author(s):  
M Canakci

Biodiesel is an alternative diesel fuel that can be produced from renewable feedstocks such as vegetable oils, waste frying oils, and animal fats. It is an oxygenated, non-toxic, sulphur-free, biodegradable, and renewable fuel. Many engine manufacturers have included this fuel in their warranties since it can be used in diesel engines without significant modification. However, the fuel properties such as cetane number, heat of combustion, specific gravity, and kinematic viscosity affect the combustion, engine performance and emission characteristics. In this study, the engine performance and emissions characteristics of two different petroleum diesel fuels (No. 1 and No. 2 diesel fuels) and biodiesel from soybean oil and its 20 per cent blends with No. 2 diesel fuel were compared. The results showed that the engine performance of the neat biodiesel and its blend was similar to that of No. 2 diesel fuel with nearly the same brake fuel conversion efficiency, and slightly higher fuel consumption. CO2 emission for the biodiesel was slightly higher than for the No. 2 diesel fuel. Compared with diesel fuels, biodiesel produced lower exhaust emissions, except NO x.


2012 ◽  
Vol 518-523 ◽  
pp. 3263-3266
Author(s):  
Jazair Yahya Wira ◽  
Tan Wee Choon ◽  
Samion Syahrullail ◽  
Noge Hirofumi ◽  
Mazlan Said ◽  
...  

Production of alternative diesel fuel has been increasing drastically in many Asian countries. Since the reduction of petroleum production by Organization of Petroleum Exporting Countries (OPEC), the research on alternative fuel for diesel engine has gain interest. The target of this project is to substitute some percentage usage of conventional diesel fuel with waste substance without compromising on engine performance and exhaust emissions. This study has produced two type of alternative fuels. A test fuel consisting 30% of water into diesel fuel with the existence of additive or emulsifier (span 80) is called as DW Emul. Another test fuel which is named as DHW Emul produced by blending 30% of water into a mixture consisting of 20% of waste hydraulic oil and 80% of diesel fuel with the existence of span 80. The engine performance and exhaust emissions of DW Emul and DHW Emul are measured and has been compared with the conventional diesel fuel. A 600cc single cylinder direct injection diesel engine was used. The experiment was conducted at 1500 rpm with variable engine loads. Results show that DHW Emul and DW Emul has higher brake specific fuel consumption (BSFC). However, by considering the total use of diesel fuel contained in DW Emul, the quantity was lower at all loads. The same goes for DHW Emul at low load but deteriorate at high load which show slightly higher compared with of using 100% conventional diesel fuel. DHW Emul has suppressed CO emission that is usually high of using emulsion fuel to the level similar to conventional diesel fuel. NOx and Smoke emissions for DHW Emul are lower than conventional diesel. The use of DHW Emul can give significant reduction of NOx and Smoke emissions without deterioration of CO emission.


Author(s):  
A. K. Babu ◽  
G. Devaradjane

The intent of this paper is to summarize the state of knowledge on use of vegetable oils as diesel fuels. Fuel related properties are reviewed and compared with conventional diesel fuel. The use of neat vegetable oil (edible and/or nonedible), biodiesel and its blends in a diesel engine has been discussed. Performance and emission characteristics are highlighted. Suitability of different combustion chambers for diesel engine operation with vegetable oils is outlined. Techniques to decrease viscosities are discussed. An overview on current developments on the use of vegetable oils directly and indirectly in diesel engines is presented.


2015 ◽  
Vol 773-774 ◽  
pp. 425-429 ◽  
Author(s):  
Nur Atiqah Ramlan ◽  
Abdul Adam Abdullah ◽  
Mohd Herzwan Hamzah ◽  
Nur Fauziah Jaharudin ◽  
Rizalman Mamat

The depletion of fossil fuels as well as the rises of greenhouse gases had caused most government worldwide to follow the international energy policies for the use of biodiesel. One of the economical sources for biodiesel production is waste cooking oil. The use of waste cooking oil is more sustainable if they can perform similarly to conventional diesel fuel. This paper deals with the experimental study carried out to evaluate the engine performance and exhaust emission of diesel engine operated by biodiesel from waste cooking oil at various engine speed. The biodiesel used are known as B5, which contains of 5% of waste cooking oil and 95% of diesel fuel. The other one is B20, which contains of 20% of waste cooking oil plus 80% of diesel. Diesel was used as a comparison purposes. The results show that power and torque for B5 give the closest trend to diesel. In terms of heat release, diesel still dominates the highest value compared to B5 and B20. For exhaust emission, B5 and B20 showed improvement in the reduction of NOx and PM.


1979 ◽  
Vol 101 (4) ◽  
pp. 524-532 ◽  
Author(s):  
G. P. Gross ◽  
K. E. Murphy

Diesel fuels were blended from selected components to provide aromatics contents from 10 to 57 percent and viscosities from 2.21 to 6.95 cSt (mm2/s) at 100°F (38°C) in a 14 fuel set which included a commercial diesel fuel as a reference fuel. Tests of the fuels were conducted under full load at several speeds and in the Federal 13-mode and smoke-cycle procedures, using a 2-stroke naturally aspirated engine and a 4-stroke turbocharged engine. Fuel properties such as viscosity, aromaticity, cetane number, gravity, distillation points, and heat of combustion, some of which were partially correlated, were examined individually and in combinations as predictors of the engine performance data. The two test engines responded similarly to fuel variables, but with some differences in sensitivity. Power output (bhp) and fuel economy (bhp-h/lb) were correlated with the heats of combustion on volume and weight bases, respectively. Smoke increased with the amount of fuel boiling above 640°F (338°C) and was not apparently affected by fuel aromatic content. Emissions of nitrogen oxides and of nitrogen oxides plus hydrocarbons increased with increasing fuel aromatics by itself or with increasing fuel specific gravity and decreasing fuel 50 percent-distillation temperature. Hydrocarbon emissions decreased with increasing viscosity or cetane number. Carbon monoxide emissions increased with increasing 90 percent-distillation temperature and with decreases in cetane number.


Author(s):  
H Masjuki ◽  
M Z Abdulmuin ◽  
H S Sii

Results of exhaust emissions and lube oil analysis of a diesel engine fuelled with Malaysian palm oil diesel (POD or palm oil methyl esters) and ordinary diesel (OD) emulsions containing 5 and 10 per cent of water by volume are compared with those obtained when 100 per cent POD and OD fuel were used. Very promising results have been obtained. Neither the lower cetane number of POD fuel nor its emulsification with water presented any obstacle to the operation of a diesel engine during steady state engine tests and the 20 hour endurance tests. Polymerization and carbon deposits on fuel injector nozzles were monitored. Engine performance and fuel consumption for POD and its emulsions are comparable with those of OD fuel. Accumulations of wear metal debris in crank-case oil samples were lower with POD and emulsified fuels compared with baseline OD fuel. Both OD and POD emulsions with 10 per cent water by volume show a promising tendency for wear resistance. The exhaust emissions for POD and emulsified fuels are found to be much cleaner, containing less CO, CO2, HC, NOx, SOx and smoke level. Power output is slightly reduced when using POD and emulsified fuels.


Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3413 ◽  
Author(s):  
Iraklis Zahos-Siagos ◽  
Vlasios Karathanassis ◽  
Dimitrios Karonis

Currently, n-butanol is a promising oxygenate (potentially of renewable origin) to be used in blends with conventional diesel fuel in compression ignition engines. However, its poor ignition quality can drastically deteriorate the cetane number (CN) of the blend. In the present work, the effects of adding n-butanol to ultra-low-sulfur diesel (ULSD) were assessed, aiming at simultaneously eliminating its negative effect on the blend’s ignition quality. Concentrations of 10% and 20% (v/v) n-butanol in ULSD fuel were studied. As cetane-improving agents, a widely used cetane improver (2-ethylhexyl nitrate—EHN) and a high-CN, bio-derived paraffinic diesel (hydrotreated used cooking oil—HUCO) were used. The initial investigation of ignition quality improvement with the addition of either EHN or HUCO produced four “ignition quality response curves” that served as mixing guides in order to create four blends of identical ignition quality as the baseline ULSD fuel. These four blends (10% and 20% v/v n-butanol in ULSD fuel, with the addition of either EHN or HUCO, at the cost of ULSD volume share only) were evaluated comparatively to the baseline ULSD fuel and a 10% (v/v) n-butanol/90% ULSD blend with regards to their physicochemical properties and the effect on the operation and exhaust emissions of a stationary diesel engine.


Author(s):  
F. Daneshvar ◽  
N. Jahani ◽  
M. B. Shafii

In this experimental study, a four stroke diesel engine was conducted to investigate the effect of adding water-based ferrofluid to diesel fuel on engine performance. To our knowledge, Magnetic nanoparticles had not been used before. To this end, emulsified diesel fuels of 0, 0.4, and 0.8 water-based ferrofluid/Diesel ratios by volume were used as fuel. The ferrofluid used in this study was a handmade water-based ferrofluid prepared by the authors. The results show that adding water-based ferrofluid to diesel fuel has a perceptible effect on engine performance, increasing the brake thermal efficiency relatively up to 12%, and decreasing the brake specific fuel consumption relatively up to 11% as compared to diesel fuel. In addition, the results indicate that increasing ferrofluid concentration will magnify the results. Furthermore, it was found that magnetic nanoparticles can be collected at the engine exhaust using magnetic bar.


Sign in / Sign up

Export Citation Format

Share Document