Radon and radon daughters in homes utilizing deep well water supplies, Halifax County, Nova Scotia

Author(s):  
R.G. McGregor ◽  
L.A. Gourgon
1993 ◽  
Vol 20 (1) ◽  
pp. 44-49 ◽  
Author(s):  
N. L. Powell

Abstract Foliar application of manganese and boron mixed with pesticides in water solution is a common practice for peanut (Arachis hypogaea L.) production. This study was conducted to determine the compatibility of mixing manganese, boron, and leafspot fungicides using water from three sources. Spray mixtures of the chelated manganese salt of ethylene diamine tetra-acetate and the inorganic salts of manganese as manganese sulfate(TECMANGAMTM), manganese sulfate monohydrate, manganese chloride, and manganese nitrate were developed using deep-well water, shallow well water, or distilled water. Boron was added to these mixtures using boric acid or disodium octaborate tetrahydrate. In addition, all combinations were mixed with the leafspot fungicides chlorothalonil or cupric hydroxide plus sulfur. Mixtures were equivalent to recommended rates of manganese, boron, and fungicide applied to the foliage in 140 L ha-1 of spray volume. Measurements were made of solution pH and manganese remaining in solution after filtration. Development of precipitates was noted. In the deep-well water solution (pH = 8.0), addition of manganese sulfate, manganese sulfate monohydrate and manganese chloride caused precipitates to form. Manganese nitrate and chelated manganese solutions did not form precipitates. Addition of disodium octaborate tetrahydrate increased the tank-mix pH for all waters source, and caused increased precipitation of the manganese inorganic salts, but not the chelated manganese. Use of boric acid in the water lowered solution pH, and all manganese sources remained in solution. Spray-tank-mix pH was critical in keeping all manganese inorganic salts in solution. For all pH levels studied (pH 4.6 to 8.4) the chelated manganese remained in solution without formation of a precipitate. Chemical analyses of the filtrate showed that only 75 to 80% of the inorganic salts of manganese remained in solution with disodium octaborate tetrahydrate, while 100% of the chelated manganese salt remained in solution. Inorganic salts of manganese and disodium octaborate tetrahydrate should not be mixed with chlorothalonil, and none of the manganese materials should be mixed with cupric hydroxide plus sulfur as a spray-tank-mixture for foliar application.


2018 ◽  
Vol 5 (13) ◽  
pp. 111
Author(s):  
Ma. Elizabeth Azpilcueta-Pérez ◽  
Aurelio Pedroza Sandoval ◽  
Ricardo Trejo-Calzada ◽  
Ignacio Sanchez-Cohen ◽  
María Del Rosario Jacobo-Salcedo

The aim was to conduct a residual analysis of the main cationic elements, heavy metals and arsenic in irrigated maize fodder production. Four soil and maize plant samplings were conducted in eight sites in April, May, June and July, 2014. Ca, Na, As, and Pb concentrations were higher in the soil. The As concentration was higher in June and July. La Purísima had a higher As concentration, while Bermejillo, La Galicia and La Rosita had a higher Ca concentration. K, Ca, Pb and Zn had higher concentrations in the maize plant, with Ca, Na and K having highervalues in July and Mg, Pb and Zn being higher in May and July. The content of Ca, Mg, Na and K did not dier among regions; arsenic was higher in Leon Guzmán and La Rosita.


2020 ◽  
Vol 11 (01) ◽  
pp. 22-33
Author(s):  
John Jiya Musa ◽  
Otuaro Ebierni Akpoebidimiyen ◽  
Mohammed Tanimu Musa ◽  
Pius Olusegun Olufemi Dada ◽  
Elijah Tsado Musa

2020 ◽  
Vol 09 (01) ◽  
pp. 30-40
Author(s):  
MA Sudaria ◽  
C Burca ◽  
B Francisco ◽  
M Paloma ◽  
K Rodrigo ◽  
...  
Keyword(s):  

1985 ◽  
Vol 77 (6) ◽  
pp. 73-80 ◽  
Author(s):  
Odilia Maessen ◽  
Bill Freedman ◽  
Ross McCurdy

2019 ◽  
Vol 2 (3) ◽  
pp. 244 ◽  
Author(s):  
Sindu Nuranto ◽  
Syaukat Ali

As we understand together that today has begun to decrease the utilization of deep well water and water springs as an alternative source of water in the PDAM, this is due to environmental conditions that have undergone many changes so that our environment has been experiencing a lot of carrying capacity. The selection of deep well water is preferred because the water quality is relatively better than the surface water. This condition causes PDAM to choose surface water such as river water as raw water, such as Progo water which is now used as alternative water for PDAM Kota Yogyakarta, PDAM Sleman and Bantul. Characteristics of surface water are generally poorer than ground water, this is due to more possibilities of contamination with pollutants resulting from human activities such as industry, agriculture and even natural events such as rain. It is physically easy to see that the surface water is generally cloudy compared to groundwater, since surface water generally contains mud and larger suspended particles. To reduce the mud content and suspended particles can be used coagulant material. There are many types of coagulant materials that we know such as alum (Alumunium Sulfate, Sodium Aluminate, Ferro Sulphate, Ferric Sulphate, Ferric Chloride, Lime and others). Technically coagulant capable of decreasing turbidity up to 0 NTU is Al2(SO4)3, combination between NaAlO2 and PAC, and combination between Fe (SO4) and PAC. Economically the cheapest coagulant is alum, with the optimum dose not much different but the purchase price is much cheaper than other types of coagulant.


Sign in / Sign up

Export Citation Format

Share Document