Particle size distribution and long‐range transport of metals in atmospheric aerosols from the Alfabia Station (Majorca, Spain)

Author(s):  
J. Mateu ◽  
R. Forteza ◽  
V. Cerdà ◽  
M. Colom‐Altés
1982 ◽  
Vol 60 (8) ◽  
pp. 1101-1107
Author(s):  
C. V. Mathai ◽  
A. W. Harrison

As part of an ongoing general research program on the effects of atmospheric aerosols on visibility and its dependence on aerosol size distributions in Calgary, this paper presents the results of a comparative study of particle size distribution and visibility in residential (NW) and industrial (SE) sections of the city using a mobile laboratory. The study was conducted in the period October–December, 1979. An active scattering aerosol spectrometer measured the size distributions and the corresponding visibilities were deduced from scattering coefficients measured with an integrating nephelometer.The results of this transit study show significantly higher suspended particle concentrations and reduced visibilities in the SE than in the NW. The mean values of the visibilities are 44 and 97 km for the SE and the NW respectively. The exponent of R (particle radius) in the power law aerosol size distribution has a mean value of −3.36 ± 0.24 in the SE compared with the corresponding value of −3.89 ± 0.39 for the NW. These results arc in good agreement with the observations of Alberta Environment; however, they are in contradiction with a recent report published by the City of Calgary.


2021 ◽  
Vol 30 (1) ◽  
pp. 7-17
Author(s):  
Manas Kanti Deb ◽  
Mithlesh Mahilang ◽  
Jayant Nirmalkar

Size fractionated atmospheric aerosols were collected using cascade impactor sampler on quartz flter substrate during October 2015 to February 2016 in campus of Pt Ravishankar Shukla University of Raipur Chhattisgarh. The size of aerosol particles is of crucial importance to several processes in the atmosphere. The relative concentrations in both modes are responsible for the variability observed in the shape of the size distribution. Characteristic size distributions of measured aerosol over central India showed identifcation of three main behaviour types during entire study period: (i) month in which bimodal size distribution dominated in coarse mode (October 2015, 5 December 2015 and January, 2016), (ii) those months in which bimodal distribution equally intense in both one, and coarse modes (November, 2015) and (iii) those which were mainly dominated within fine (February, 2016, December, 2015). The two-subsequent month namely November 2015 and December 2015 shows bimodal size distribution with dominance in fine size range in comparison to coarse mode, possibly these high loading of one particles is due to long range transport. The peculiar observation of air trajectory shows that there is increase in fine particles concentration during December 2015, although there in increase in temperature and wind speed. The reason for this high concentration is long range transport of air masses. However, January has normal trend in particular matter concentration. The important finding of the present study based on characteristic size distribution and air trajectory plots accomplishes that fine particles are obtained through long range transport whereas coarse particles are mainly from local origin.


Sign in / Sign up

Export Citation Format

Share Document