bimodal size distribution
Recently Published Documents


TOTAL DOCUMENTS

114
(FIVE YEARS 15)

H-INDEX

21
(FIVE YEARS 3)

Atmosphere ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1412
Author(s):  
Evgueni Kassianov ◽  
Mikhail Pekour ◽  
James Barnard ◽  
Connor J. Flynn ◽  
Fan Mei ◽  
...  

Aerosol columnar size distributions (SDs) are commonly provided by aerosol inversions based on measurements of both spectral extinction and sky radiance. These inversions developed for a fully clear sky offer few SDs for areas with abundant clouds. Here, we estimate SDs from spectral extinction data alone for cloudy coastal and maritime regions using aerosol refractive index (RI) obtained from chemical composition data. Our estimation involves finding volume and mean radius of lognormally distributed modes of an assumed bimodal size distribution through fitting of the spectral extinction data. We demonstrate that vertically integrated SDs obtained from aircraft measurements over a coastal site have distinct seasonal changes, and these changes are captured reasonably well by the estimated columnar SDs. We also demonstrate that similar seasonal changes occur at a maritime site, and columnar SDs retrieved from the combined extinction and sky radiance measurements are approximated quite well by their extinction only counterparts (correlation exceeds 0.9) during a 7-year period (2013–2019). The level of agreement between the estimated and retrieved SDs depends weakly on wavelength selection within a given spectral interval (roughly 0.4–1 µm). Since the extinction-based estimations can be performed frequently for partly cloudy skies, the number of periods where SDs can be found is greatly increased.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Suzanne Humphrey ◽  
Álvaro San Millán ◽  
Macarena Toll-Riera ◽  
John Connolly ◽  
Alejandra Flor-Duro ◽  
...  

AbstractConjugation has classically been considered the main mechanism driving plasmid transfer in nature. Yet bacteria frequently carry so-called non-transmissible plasmids, raising questions about how these plasmids spread. Interestingly, the size of many mobilisable and non-transmissible plasmids coincides with the average size of phages (~40 kb) or that of a family of pathogenicity islands, the phage-inducible chromosomal islands (PICIs, ~11 kb). Here, we show that phages and PICIs from Staphylococcus aureus can mediate intra- and inter-species plasmid transfer via generalised transduction, potentially contributing to non-transmissible plasmid spread in nature. Further, staphylococcal PICIs enhance plasmid packaging efficiency, and phages and PICIs exert selective pressures on plasmids via the physical capacity of their capsids, explaining the bimodal size distribution observed for non-conjugative plasmids. Our results highlight that transducing agents (phages, PICIs) have important roles in bacterial plasmid evolution and, potentially, in antimicrobial resistance transmission.


Catalysts ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 718
Author(s):  
Diana Nelli ◽  
Cesare Roncaglia ◽  
Samuel Ahearn ◽  
Marcel Di Vece ◽  
Riccardo Ferrando ◽  
...  

PtPd nanoparticles are among the most widely studied nanoscale systems, mainly because of their applications as catalysts in chemical reactions. In this work, a combined experimental-theoretical study is presented about the dependence of growth shape of PtPd alloy nanocrystals on their composition. The particles are grown in the gas phase and characterized by STEM-HRTEM. PtPd nanoalloys present a bimodal size distribution. The size of the larger population can be tuned between 3.8 ± 0.4 and 14.1 ± 2.0 nm by controlling the deposition parameters. A strong dependence of the particle shape on the composition is found: Pd-rich nanocrystals present more rounded shapes whereas Pt-rich ones exhibit sharp tips. Molecular dynamics simulations and excess energy calculations show that the growth structures are out of equilibrium. The growth simulations are able to follow the growth shape evolution and growth pathways at the atomic level, reproducing the structures in good agreement with the experimental results. Finally the optical absorption properties are calculated for PtPd nanoalloys of the same shapes and sizes grown in our experiments.


2021 ◽  
Author(s):  
Peiyuan Kang ◽  
Yang Wang ◽  
Blake Wilson ◽  
Jaona Randrianalisoa ◽  
Zhenpeng Qin

Understanding the laser-nanomaterials interaction including nanomaterial fragmentation has important implications in nanoparticle manufacturing, energy, and biomedical sciences. So far, three mechanisms of laser-induced fragmentation have been recognized including non-thermal processes and thermomechanical force under femtosecond pulses, and the phase transitions under nanosecond pulses. Here we show that single picosecond (ps) laser pulse stimulation leads to anomalous fragmentation of gold nanoparticles that deviates from these three mechanisms. The ps laser fragmentation was weakly dependent on particle size, and it resulted in a bimodal size distribution. Importantly, ps laser stimulation fragmented particles below the melting point and below the threshold for non-thermal mechanism. This study reveals a previously unknown regime of nanoparticle fragmentation.


2021 ◽  
Vol 30 (1) ◽  
pp. 7-17
Author(s):  
Manas Kanti Deb ◽  
Mithlesh Mahilang ◽  
Jayant Nirmalkar

Size fractionated atmospheric aerosols were collected using cascade impactor sampler on quartz flter substrate during October 2015 to February 2016 in campus of Pt Ravishankar Shukla University of Raipur Chhattisgarh. The size of aerosol particles is of crucial importance to several processes in the atmosphere. The relative concentrations in both modes are responsible for the variability observed in the shape of the size distribution. Characteristic size distributions of measured aerosol over central India showed identifcation of three main behaviour types during entire study period: (i) month in which bimodal size distribution dominated in coarse mode (October 2015, 5 December 2015 and January, 2016), (ii) those months in which bimodal distribution equally intense in both one, and coarse modes (November, 2015) and (iii) those which were mainly dominated within fine (February, 2016, December, 2015). The two-subsequent month namely November 2015 and December 2015 shows bimodal size distribution with dominance in fine size range in comparison to coarse mode, possibly these high loading of one particles is due to long range transport. The peculiar observation of air trajectory shows that there is increase in fine particles concentration during December 2015, although there in increase in temperature and wind speed. The reason for this high concentration is long range transport of air masses. However, January has normal trend in particular matter concentration. The important finding of the present study based on characteristic size distribution and air trajectory plots accomplishes that fine particles are obtained through long range transport whereas coarse particles are mainly from local origin.


Author(s):  
М.В. Байдакова ◽  
Н.А. Берт ◽  
В.Ю. Давыдов ◽  
А.В. Ершов ◽  
А.А. Левин ◽  
...  

Multi-layered nanosized Al2O3/Ge/Si structures manufactured by electron-beam evaporation and annealed at a temperature within the range 700−900◦C are examined using transmission electron microscopy, Raman spectroscopy and X-ray diffraction techniques. The periodic structure with a good layer planarity is confirmed to retain after heat treatment up to 900◦C. At an annealing temperature above 700◦C, nanocrystallites with a bimodal size distribution start to form within initially amorphous Ge layers, the mean size of small crystallites being determined by Ge layer thickness and annealing temperature. An essential loss of Ge from multi-layered structure after 900oC anneal and development of Ge1−x Six solid solution with x up to 0.07 in the nanocrystallites is revealed.


Sign in / Sign up

Export Citation Format

Share Document