scholarly journals Impact of freeway weaving segment design on light-duty vehicle exhaust emissions

2018 ◽  
Vol 68 (6) ◽  
pp. 564-575 ◽  
Author(s):  
Qing Li ◽  
Fengxiang Qiao ◽  
Lei Yu ◽  
Shuyan Chen ◽  
Tiezhu Li
2013 ◽  
Vol 47 (23) ◽  
pp. 13865-13872 ◽  
Author(s):  
Matthew A. Ratcliff ◽  
Jon Luecke ◽  
Aaron Williams ◽  
Earl Christensen ◽  
Janet Yanowitz ◽  
...  

2015 ◽  
Vol 49 (12) ◽  
pp. 7473-7482 ◽  
Author(s):  
Adam Prokopowicz ◽  
Marzena Zaciera ◽  
Andrzej Sobczak ◽  
Piotr Bielaczyc ◽  
Joseph Woodburn

Air & Waste ◽  
1993 ◽  
Vol 43 (11) ◽  
pp. 1461-1471 ◽  
Author(s):  
Quanlu Wang ◽  
Catherine Kling ◽  
Daniel Sperling

2011 ◽  
Vol 11 (22) ◽  
pp. 11553-11567 ◽  
Author(s):  
P. Krecl ◽  
A. C. Targino ◽  
C. Johansson

Abstract. Carbon-containing particles have deleterious effects on both Earth's climate and human health. In Europe, the main sources of light-absorbing carbon (LAC) emissions are the transport (67%) and residential (25%) sectors. Information on the spatiotemporal variability of LAC particles in urban areas is relevant for air quality management and to better diagnose the population exposure to these particles. This study reports on results of an intensive field campaign conducted at four sites (two kerbside stations, one urban background site and a rural station) in Stockholm, Sweden, during the spring 2006. Light-absorbing carbon mass (MLAC) concentrations were measured with custom-built Particle Soot Absorption Photometers (PSAP). The spatiotemporal variability of MLAC concentrations was explored by examining correlation coefficients (R), coefficients of divergence (COD), and diurnal patterns at all sites. Simultaneous measurements of NOx, PM10, PM2.5, and meteorological variables were also carried out at the same locations to help characterize the LAC emission sources. Hourly mean (± standard deviation) MLAC concentrations ranged from 0.36±0.50 at the rural site to 5.39±3.60 μg m−3 at the street canyon site. Concentrations of LAC between urban sites were poorly correlated even for daily averages (R<0.70), combined with highly heterogeneously distributed concentrations (COD>0.30) even at spatial scales of few kilometers. This high variability is connected to the distribution of emission sources and processes contributing to the LAC fraction at these sites. At urban sites, MLAC tracked NOx levels and traffic density well and mean MLAC/PM2.5 ratios were larger (26–38%) than at the background sites (4–10%). The results suggest that vehicle exhaust emissions are the main responsible for the high MLAC concentrations found at the urban locations whereas long-range transport (LRT) episodes of combustion-derived particles can generate a strong increase of levels at background sites. To decrease pollution levels at kerbside and urban background locations in Stockholm, we recommend abatement strategies that target reductions of vehicle exhaust emissions, which are the main contributors to MLAC and NOx concentrations.


2002 ◽  
Author(s):  
Andrew J. Kean ◽  
Robert F. Sawyer ◽  
Robert A. Harley ◽  
Gary R. Kendall

2016 ◽  
Vol 255 (1-2) ◽  
pp. 391-420 ◽  
Author(s):  
Boxiao Chen ◽  
Erica Klampfl ◽  
Margaret Strumolo ◽  
Yan Fu ◽  
Xiuli Chao ◽  
...  

Author(s):  
Saeed Vasebi ◽  
Yeganeh M. Hayeri ◽  
Constantine Samaras ◽  
Chris Hendrickson

Gasoline is the main source of energy used for surface transportation in the United States. Reducing fuel consumption in light-duty vehicles can significantly reduce the transportation sector’s impact on the environment. Implementation of emerging automated technologies in vehicles could result in fuel savings. This study examines the effect of automated vehicle systems on fuel consumption using stochastic modeling. Automated vehicle systems examined in this study include warning systems such as blind spot warning, control systems such as lane keeping assistance, and information systems such as dynamic route guidance. We have estimated fuel savings associated with reduction of accident and non-accident-related congestion, aerodynamic force reduction, operation load, and traffic rebound. Results of this study show that automated technologies could reduce light-duty vehicle fuel consumption in the U.S. by 6% to 23%. This reduction could save $60 to $266 annually for the owners of vehicles equipped with automated technologies. Also, adoption of automated vehicles could benefit all road users (i.e., conventional vehicle drivers) up to $35 per vehicle annually (up to $6.2 billion per year).


2018 ◽  
Author(s):  
Hamza Shafique ◽  
Brad Richard ◽  
Martha Christenson ◽  
Sandra Bayne

Sign in / Sign up

Export Citation Format

Share Document