scholarly journals Impact of effective rainfall on net irrigation water requirement: The case of Ethiopia

Water Science ◽  
2020 ◽  
Vol 34 (1) ◽  
pp. 155-163
Author(s):  
Andualem Shigute Bokke ◽  
Keneni Elias Shoro
2013 ◽  
Vol 340 ◽  
pp. 961-965
Author(s):  
Xin Hua Wang ◽  
Mei Hua Guo ◽  
Hui Mei Liu

According to Kunming 1980-2010 monthly weather data and CROPWAT software and the corresponding crop data, crop water requirements and irrigation water use are calculated. By frequency analysis, irrigation water requirement was get for different guaranteed rate. The results show that: corn, potatoes, tobacco, and soybeans average crop water requirements were 390.7mm, 447.9mm, 361.8mm and 328.4mm, crop water dispersion coefficient is small, period effective rainfall during crop growth in most of the year can meet the crop water requirements, so irrigation water demand is small. While the multi-year average crop water requirements were 400.8mm, 353.5mm, 394.3mm for small spring crops of wheat, beans, rape. Because the effective rainfall for these crops during growth period is relative less, crop irrigation water requirements for small spring crop is much. Vegetables and flowers are plant around the year, so the crop water and irrigation water requirements are the largest.


2019 ◽  
Vol 10 (2) ◽  
pp. 61-68
Author(s):  
Hanan Shalsabillah ◽  
Khairul Amri ◽  
Gusta Gunawan

The Irrigation Area of Air Nipis is located in Regency of South Bengkulu at Bengkulu Province with irrigation area 3.116 Ha. Planning and management of irrigation systems is one of the important steps to determine the irrigation water requirement as a whole. The purpose of this research is aim to analyze the water requirement to get value prediction of minimum and maximum irrigation water requirement in irrigation area of Air Nipis using the CROPWAT Version 8.0 method. Irrigation water requirements obtained from CROPWAT Version 8.0 are based on climate data, soil data and plants.The parameters that were reference plant evapotranspiration, effective rainfall, soil treatment, soil data, and plants. The results of the research showed that the maximum irrigation requirement for calculation using CROPWAT 8.0 software occurred in the first 10 days of December (14,49 m3/sec), while the minimum irrigation water requirements for CROPWAT 8.0 occurs in mid to end March (0,04 m3/sec).


2019 ◽  
Vol 8 (4) ◽  
pp. 2859-2866

The rapid increase of desertification’s degradation is one of the worst environmental and economic threats for dry areas. Climate changes, very year impacts thousands of areas across the globe. The high cost of electricity and diesel-based fuel affects photovoltaic water pumping requirements for irrigation in many parts of the world. Solar irradiance in every dry place is extremely high due the drought increase. Thus, using solar energy for water pumping is a promising alternative sources of energy. Undertaking irrigation for a particular place and crop requires not only skills in the irrigation planning but also in the power requirement of the entire system. A reliable and accurate estimation of ET rate and irrigation water requirement (IWR) are soundly important in irrigation field. This sought to accurately estimate the irrigation power requirement by using PVsyst software on nine different pumps technologies combinations with different type of converters at 100m, 150m, 180m, and 200m of Total dynamic Head (TDH). The study has been conducted in four sections, the first section dealt with the assessment of the collected data, the second section with the simulations, the third one with the irrigation water requirement and finally irrigation water requirement. The results found in study show that IPR of a crop is majorly depend on the TDH. Among the nine combinations, results show that the Maximum Power Point Tracking (MPPT) technology is the best in terms of power requirement of selected the crop. Furthermore, the maximum and minimum values of the irrigation water requirement for millet crop was found to be 12.9 mm/day and 4.9mm/day respectively.


2020 ◽  
Vol 8 (5) ◽  
pp. 1060-1068
Author(s):  
Santhosh UN ◽  
Desai BK ◽  
Satyanarayana Rao ◽  
Masthana Reddy BG ◽  
Vinay Krishnamurthy ◽  
...  

1985 ◽  
pp. 755-765
Author(s):  
Shie-Yui Liong ◽  
Ongko Sutjahyo ◽  
Bernard Rasli

2019 ◽  
Author(s):  
MAYA AMALIA ACHYADI ◽  
KOICHIRO OHGUSHI ◽  
TOSHIHIRO MORITA ◽  
SU WAI THIN ◽  
WATARU KAWAHARA

Sign in / Sign up

Export Citation Format

Share Document