scholarly journals Taste response profiles of the labellar chemosensilla of the medflyCeratitis capitata(Diptera: Tephritidae)

2014 ◽  
Vol 81 (1) ◽  
pp. 32-42 ◽  
Author(s):  
C. Masala ◽  
F. Loy ◽  
P. Solari ◽  
G. Sollai ◽  
P. Muroni ◽  
...  
2003 ◽  
Vol 90 (2) ◽  
pp. 911-923 ◽  
Author(s):  
Christian H. Lemon ◽  
Toshiaki Imoto ◽  
David V. Smith

We examined the effect of the sweet transduction blocker gurmarin on taste responses recorded from neurons in the rat solitary nucleus (NST) to determine how gurmarin sensitivity is distributed across neuronal type. Initially, responses evoked by washing the anterior tongue and palate with 0.5 M sucrose, 0.1 M NaCl, 0.01 M HCl, and 0.01 M quinine-HCl were recorded from 35 neurons. For some cells, responses to a sucrose concentration series (0.01–1.0 M) or an array of sweet-tasting compounds were also measured. Gurmarin (10 μg/ml, 2–4 ml) was then applied to the tongue and palate. Stimuli were reapplied after 10–15 min. Neurons were segregated into groups based on similarities among their initial response profiles using hierarchical cluster analysis (HCA). Results indicated that sucrose responses recorded from neurons representative of each HCA-defined class were suppressed by gurmarin. However, a disproportionate percentage of cells in each group displayed sucrose responses that were substantially attenuated after gurmarin treatment. Postgurmarin sucrose responses recorded from neurons that composed 57% of class S, 40% of class N, and 33% of class H were suppressed by ≥50% relative to control. On average, attenuation was statistically significant only in class S and N neurons. Although the magnitude of gurmarin-induced response suppression did not differ across sucrose concentration, responses to different sweet-tasting compounds were differentially affected. Responses to NaCl, HCl, or quinine were not suppressed by gurmarin. Results suggest that information from gurmarin-sensitive and -insensitive receptor processes converges onto single NST neurons.


1995 ◽  
Vol 269 (3) ◽  
pp. R647-R661 ◽  
Author(s):  
K. Nakamura ◽  
R. Norgren

The activity of single taste neurons was recorded from the nucleus of the solitary tract before (n = 41) and after (n = 58) awake, behaving rats were switched to a sodium-free diet. During sodium deprivation, the spontaneous activity of the neurons increased (142%), but responses to water and sapid stimuli decreased. For all neurons in the sample, the mean response to water decreased to 72% of its predeprivation level, NaCl dropped to 53%, sucrose to 41%, citric acid to 68%, and quinine HCl to 84%. Despite the drop in magnitude, the response profiles of the taste neurons were not changed by the dietary condition. In the Na-replete state, 61% of the activity elicited by NaCl occurred in NaCl-best cells and 33% in sucrose-best neurons. In the depleted state, these values were 60 and 26%, respectively. Nevertheless, at the highest concentrations tested, deprivation did alter the relative responsiveness of the gustatory neurons to sucrose and NaCl in specific categories of neurons. Compared with acute preparations, dietary sodium deprivation in awake, behaving rats produced a more general reduction in the gustatory responses of neurons in the nucleus of the solitary tract. The largest reductions in elicited activity occurred for the "best stimulus" of a particular neuron, thus leading to smaller differences in response magnitude across stimuli, particularly at the highest concentrations tested.


2005 ◽  
Vol 115 (2) ◽  
pp. S120
Author(s):  
D.F.G. DaSilva ◽  
M.D. Evans ◽  
K.A. Roberg ◽  
C.J. Tisler ◽  
E.L. Anderson ◽  
...  

Allergy ◽  
1996 ◽  
Vol 51 (10) ◽  
pp. 732-740 ◽  
Author(s):  
K. Sugimura ◽  
S. Hashiguchi ◽  
Y. Takahashi ◽  
K. Hino ◽  
Y. Taniguchi ◽  
...  

1991 ◽  
Vol 66 (4) ◽  
pp. 1156-1165 ◽  
Author(s):  
V. L. Smith-Swintosky ◽  
C. R. Plata-Salaman ◽  
T. R. Scott

1. Extracellular action potentials were recorded from 50 single neurons in the insular-opercular cortex of two alert cynomolgus monkeys during gustatory stimulation of the tongue and palate. 2. Sixteen stimuli, including salts, sugars, acids, alkaloids, monosodium glutamate, and aspartame, were chosen to represent a wide range of taste qualities. Concentrations were selected to elicit a moderate gustatory response, as determined by reference to previous electrophysiological data or to the human psychophysical literature. 3. The cortical region over which taste-evoked activity could be recorded included the frontal operculum and anterior insula, an area of approximately 75 mm3. Taste-responsive cells constituted 50 (2.7%) of the 1,863 neurons tested. Nongustatory cells responded to mouth movement (20.7%), somatosensory stimulation of the tongue (9.6%), stimulus approach or anticipation (1.7%), and tongue extension (0.6%). The sensitivities of 64.6% of these cortical neurons could not be identified by our stimulation techniques. 4. Taste cells had low spontaneous activity levels (3.7 +/- 3.0 spikes/s, mean +/- SD) and showed little inhibition. They were moderately broadly tuned, with a mean entropy coefficient of 0.76 +/- 0.17. Excitatory responses were typically not robust. 5. Hierarchical cluster analysis was used to determine whether neurons could be divided into discrete types, as defined by their response profiles to the entire stimulus array. There was an apparent division of response profiles into four general categories, with primary sensitivities to sodium (n = 18), glucose (n = 15), quinine (n = 12), and acid (n = 5). However, these categories were not statistically independent. Therefore the notion of functionally distinct neuron types was not supported by an analysis of the distribution of response profiles. It was the case, however, that neurons in the sodium category could be distinguished from other neurons by their relative specificity. 6. The similarity among the taste qualities represented by this stimulus array was assessed by calculating correlations between the activity profiles they elicited from these 50 neurons. The results generally confirmed expectations derived from human psychophysical studies. In a multidimensional representation of stimulus similarity, there were groups that contained acids, sodium salts, and chemicals that humans label bitter and sweet. 7. The small proportion of insular-opercular neurons that are taste sensitive and the low discharge rates that taste stimuli are able to evoke from them suggest a wider role for this cortical area than just gustatory coding.(ABSTRACT TRUNCATED AT 400 WORDS)


1997 ◽  
Vol 78 (2) ◽  
pp. 920-938 ◽  
Author(s):  
Christopher B. Halsell ◽  
Susan P. Travers

Halsell, Christopher B. and Susan P. Travers. Anterior and posterior oral cavity responsive neurons are differentially distributed among parabrachial subnuclei in rat. J. Neurophysiol. 78: 920–938, 1997. The responses of single parabrachial nucleus (PBN) neurons were recorded extracellularly to characterize their sensitivity to stimulation of individual gustatory receptor subpopulations (G neurons, n = 75) or mechanical stimulation of defined oral regions (M neurons, n = 54) then localized to morphologically defined PBN subdivisions. Convergence from separate oral regions onto single neurons occurred frequently for both G and M neurons, but converging influences were more potent when they arose from nearby locations confined to the anterior (AO) or posterior oral cavity (PO). A greater number of G neurons responded optimally to stimulation of AO than to PO receptor subpopulations, and these AO-best G neurons had higher spontaneous and evoked response rates but were less likely to receive convergent input than PO-best G neurons. In contrast, proportions, response rates, and convergence patterns of AO- and PO-best M neurons were more comparable. The differential sensitivity of taste receptor subpopulations was reflected in PBN responses. AO stimulation with NaCl elicited larger responses than PO stimulation; the converse was true for QHCl stimulation. Within the AO, NaCl elicited a larger response when applied to the anterior tongue than to the nasoincisor duct. Hierarchical cluster analysis of chemosensitive response profiles suggested two groups of PBN G neurons. One group was composed of neurons optimally responsive to NaCl (N cluster); the other to HCl (H cluster). Most N- and H-cluster neurons were AO-best. Although they were more heterogenous, all but one of the remaining G neurons were unique in responding best or second-best to quinine and so were designated as quinine sensitive (Q+). Twice as many Q+ neurons were PO- compared with AO-best. M neurons were scattered across PBN subdivisions, but G neurons were concentrated in two pairs of subdivisions. The central medial and ventral lateral subdivisions contained both G and M neurons but were dominated by AO-best N-cluster G neurons. The distribution of G neurons in these subdivisions appeared similar to distributions in most previous studies of PBN gustatory neurons. In contrast to earlier studies, however, the external medial and external lateral-inner subdivisions also contained G neurons, intermingled with a comparable population of M neurons. Unlike cells in the central medial and ventral lateral subnuclei, nearly every neuron in the external subnuclei was PO best, and only one was an N-cluster cell. In conclusion, the present study supports a functional distinction between sensory input from the AO and PO at the pontine level, which may represent an organizing principle throughout the gustatory neuraxis. Furthermore, two morphologically distinct pontine regions containing orosensory neurons are described.


Sign in / Sign up

Export Citation Format

Share Document