The potential of paleoecology for functional forest restoration planning: lessons from Late Holocene Italian pollen records

Author(s):  
Gianluca Piovesan ◽  
Anna Maria Mercuri ◽  
Scott A. Mensing
The Holocene ◽  
2021 ◽  
pp. 095968362199465
Author(s):  
Dael Sassoon ◽  
William J Fletcher ◽  
Alastair Hotchkiss ◽  
Fern Owen ◽  
Liting Feng

Around 4000 cal yr BP, Scots pine ( Pinus sylvestris) suffered a widespread demise across the British Isles. This paper presents new information about P. sylvestris populations found in the Welsh Marches (western central Britain), for which the long-term history and origins are poorly known. Two new pollen records were produced from the Lin Can Moss ombrotrophic bog (LM18) and the Breidden Hill pond (BH18). The LM18 peat core is supported by loss-on-ignition, humification analysis and radiocarbon dating. Lead concentrations were used to provide an estimated timeframe for the recent BH18 record. In contrast to many other Holocene pollen records from the British Isles, analysis of LM18 reveals that Scots pine grains were deposited continuously between c. 6900–300 cal yr BP, at frequencies of 0.3–5.4%. It is possible that individual Scots pine trees persisted through the wider demise on thin soils of steep drought-prone crags of hills or the fringes of lowland bogs in the Welsh Marches. At BH18, the record indicates a transition from broadleaved to mixed woodland, including conifer species introduced around AD 1850 including Picea and Pinus. The insights from BH18 suggest that the current populations may largely be the result of planting. Comparison of the LM18 findings with other regional pollen records highlights consistent patterns, including a Mid-Holocene maximum (ca. 7000 cal yr BP), long-term persistence at low pollen percentages and a Late-Holocene minimum (ca. 3000 cal yr BP). These distinctive trends encourage further studies on refugial areas for Scots pine in this region and elsewhere.


2009 ◽  
Vol 33 (2) ◽  
pp. 297-304 ◽  
Author(s):  
Alexandre Hüller ◽  
Geraldo Ceni Coelho ◽  
Osório Antônio Lucchese ◽  
Jorge Schirmer

Silvicultural and ecological knowledge about tree species is basic to restoration planning, particularly in high diversity regions. Here we present a comparison of four native tree species from the middle Uruguay River basin, Brazil-Argentine frontier: Heliocarpus americanus L. (Malvaceae), Maclura tinctoria (L.) D. Don ex Steud. (Moraceae), Schinus terebinthifolius Raddi (Anacardiaceae) and Cordia trichotoma (Vell.) Arrab. ex Steud. (Boraginaceae). We obtained data on initial growth, light interception, litterfall and litter mineral contents. H. americanus presented the greatest height and the lowest value of height/crown width ratio. H. americanus and M. tinctoria presented the highest light interception rate (>94 %) and highest litterfall (879 ± 151 and 792 ± 164 g·m-2·year-1, respectively). For the set of species, the lowest litterfall occurred between July and September. H. americanus presented the highest K concentration (1.13%) in the litter, while C. trichotoma had the highest values of Ca and Mg (6.35 and 2.02 %, respectively). S. terebinthifolius had the lowest light interception rate and litter mineral content.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Hossein Piri Sahragard ◽  
Majid Ajorlo ◽  
Peyman Karami

Abstract Background Suitable habitat and landscape structure play a pivotal role in the success of forest restoration projects. This study aimed to model the habitat suitability of wild almond (Amygdalus scoparia Spach) using three individual species distribution models (SDMs), i.e., backpropagation artificial neural network (BP-ANN), maximum entropy (MaxEnt), generalized linear model (GLM), as well as the ensemble technique along with measuring the landscape metrics and analyzing the relationship between the distribution of the suitable habitat of the species in different landform classes in Fars Province, southern Iran. Results There was no clear difference in the prediction performance of the models. The BP-ANN had the highest accuracy (AUC = 0.935 and k= 0.757) in modeling habitat suitability of A. scoparia, followed by the ensemble technique, GLM, and MaxEnt models with the AUC values of 0.890, 0.887, and 0.777, respectively. The highest discrimination capacity was associated to the BP-ANN model, and the highest reliability was related to the ensemble technique. Moreover, evaluation of variable importance showed that the occurrence of A. scoparia was strongly dependent on climatic variables, particularly isothermality (Bio 3), temperature seasonality (Bio 4), and precipitation of driest quarter (Bio 17). Analysis of the distribution of species habitat in different landform classes revealed that the canyon, mountain top, upland drainage, and hills in valley classes had the highest suitability for the species establishment. Conclusions Considering the importance of landform in the establishment of plant habitats, the combination of the outputs of the SDMs, landform, and the use of landscape metrics could provide both a clear view of habitat conditions and the possibility of analyzing habitat patches and their relationships that can be very useful in managing the remaining forests in semi-arid regions. The canyon, mountain top, and upland drainage classes were found to be the most important landforms to provide the highest suitable environmental conditions for the establishment of A. scoparia. Therefore, such landforms should be given priority in restoration projects of forest in the study area.


Sign in / Sign up

Export Citation Format

Share Document