scholarly journals The Use of Aspartic Proteinase from Fusarium Moniliforme for Cheese Production

1988 ◽  
Vol 3 (6) ◽  
pp. 44-48
Author(s):  
A. Jacyk ◽  
J. Chrzanowska ◽  
M. Kolaczkowska ◽  
A. Polanowski ◽  
А Яцик ◽  
...  
1983 ◽  
Vol 132 (3) ◽  
pp. 557-561 ◽  
Author(s):  
Maria K. KOLACZKOWSKA ◽  
maciej WIEVCZOREK ◽  
Antoni POLANOWSKI

1994 ◽  
Vol 60 (2) ◽  
pp. 167-174
Author(s):  
Masami YOSHIKAWA ◽  
Norihisa HASHIMOTO ◽  
Tatsuo YOKOYAMA

1997 ◽  
Vol 36 (2-3) ◽  
pp. 361-367 ◽  
Author(s):  
Eleftheria Papachristou ◽  
Costas T. Lafazanis

A great number of cheese dairies and dairy industries in Greece are disposing their wastes, mainly cheese whey, either on land or in surface receivers, in large quantities creating a major environmental problem. A typical agricultural and pastoral provincial town of 70,000 inhabitants, Trikala, became the starting point of this research. A co-treatment of the urban sewage and the dairy wastes in the municipal treatment plant was recommended. The successful application of the above statement is based primarily on the pretreatment of the cheese dairies wastes. So far for cheese whey the recovery of the lactose serum in the contemporary central unit applying membrane technology has been suggested. As far as the wastewaters of the washing and refrigeration are concerned a pretreatment is required for the defatting in a grease trap, the grating, the adjustment of pH and the equalisation in an appropriate tank. Finally, this research has also focussed on the importance of membrane technology in improving the quality of milk and cheese production.


Helia ◽  
2001 ◽  
Vol 24 (34) ◽  
pp. 77-82 ◽  
Author(s):  
Rauf Bhutta ◽  
M.H. Rahber Bhatti ◽  
Ahmad Iftikhar

SUMMARYAll four seed diffusates used for treatment of sunflower seeds, Azadirachtaindica, Capsicum annuum, Coriandrum sativum and Eugenia jambulana, reduced the populations of seed-borne fungi: Alternaria alternata, Drechslera tetramera, Emericellopsis terricola, Fusarium moniliforme, F.semitectum, Macrophomina phaseolina and Phoma oleracea. Of four seed diffusates, those from A.indica and C.sativum controlled the fungal populations almost 100%. Seed germination was increased in seed samples of both sunflower cultivars under study, HO-1 and NK-212. The obtained results indicate that seed diffusates could substitute costly chemicals for safe control of seed-borne diseases, protecting at the same time the environment from chemical pollution.


Proceedings ◽  
2020 ◽  
Vol 70 (1) ◽  
pp. 99
Author(s):  
Loulouda Bosnea ◽  
Antonia Terpou ◽  
Eleni Pappa ◽  
Efthymia Kondyli ◽  
Marios Mataragas ◽  
...  

Spirulina platensis, the most popular microalgae species known for its high protein content and bioactive compounds such as phycocyanin and allophycocyanin, has been studied for cheese fortification. Incorporation of spirulina in dairy products poses major sensorial challenges due to its characteristic odor and its insolubility in food formulation, thus limiting consumer acceptance. The main objective was the production of a novel spread cheese fortified with spirulina, so powdered spirulina was added at different concentrations (0.25, 0.5, and 1%), and the effect on physicochemical, microbiological, and sensory characteristics was assessed. Cheese samples were examined for pH, fat (Gerber-Van Gulik method), salt (Volhard method), protein (Kjeldahl), and moisture content by drying to constant weight at 102 ± 1 °C. Cheeses were also assessed organoleptically by five experienced panelists. Generally, the addition of spirulina slightly increased the protein content and affected the color of the cheeses. The cheeses achieved a good microbiological profile and were all characterized as acceptable for consumption by the panelists. However, the cheeses with 0.25 and 0.5% spirulina were mostly preferred by the evaluation panel due to the less intense characteristic odor and taste of spirulina. We conclude that it is possible to produce an acceptable spread cheese with the addition of spirulina without significant changes in the cheese production line.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Rong Zhang ◽  
Weitao Jiang ◽  
Xin Liu ◽  
Yanan Duan ◽  
Li Xiang ◽  
...  

Abstract Background Apple replant disease (ARD) has been reported from all major fruit-growing regions of the world, and is often caused by biotic factors (pathogen fungi) and abiotic factors (phenolic compounds). In order to clarify the proteomic differences of Fusarium moniliforme under the action of phloridzin, and to explore the potential mechanism of F. moniliforme as the pathogen of ARD, the role of Fusarium spp. in ARD was further clarified. Methods In this paper, the quantitative proteomics method iTRAQ analysis technology was used to analyze the proteomic differences of F. moniliforme before and after phloridzin treatment. The differentially expressed protein was validated by qRT-PCR analysis. Results A total of 4535 proteins were detected, and 293 proteins were found with more than 1.2 times (P< 0.05) differences. In-depth data analysis revealed that 59 proteins were found with more than 1.5 times (P< 0.05) differences, and most proteins were consistent with the result of qRT-PCR. Differentially expressed proteins were influenced a variety of cellular processes, particularly metabolic processes. Among these metabolic pathways, a total of 8 significantly enriched KEGG pathways were identified with at least 2 affiliated proteins with different abundance in conidia and mycelium. Functional pathway analysis indicated that up-regulated proteins were mainly distributed in amino sugar, nucleotide sugar metabolism, glycolysis/ gluconeogenesis and phagosome pathways. Conclusions This study is the first to perform quantitative proteomic investigation by iTRAQ labeling and LC-MS/MS to identify differentially expressed proteins in F. moniliforme under phloridzin conditions. The results confirmed that F. moniliforme presented a unique protein profile that indicated the adaptive mechanisms of this species to phloridzin environments. The results deepened our understanding of the proteome in F. moniliforme in response to phloridzin inducers and provide a basis for further exploration for improving the efficiency of the fungi as biocontrol agents to control ARD.


Sign in / Sign up

Export Citation Format

Share Document