Adjustment of the Seismic Collapse Fragility Curves of Structures by Considering the Ground Motion Spectral Shape Effects

2012 ◽  
Vol 16 (8) ◽  
pp. 1095-1112 ◽  
Author(s):  
Alireza Azarbakht ◽  
Mehdi Mousavi ◽  
Mohsen Ghafory-Ashtiany
Author(s):  
Jin Zhou ◽  
Zhelun Zhang ◽  
Tessa Williams ◽  
Sashi K. Kunnath

AbstractThe development of fragility functions that express the probability of collapse of a building as a function of some ground motion intensity measure is an effective tool to assess seismic vulnerability of structures. However, a number of factors ranging from ground motion selection to modeling decisions can influence the quantification of collapse probability. A methodical investigation was carried out to examine the effects of component modeling and ground motion selection in establishing demand and collapse risk of a typical reinforced concrete frame building. The primary system considered in this study is a modern 6-story RC moment frame building that was designed to current code provisions in a seismically active region. Both concentrated and distributed plasticity beam–column elements were used to model the building frame and several options were considered in constitutive modeling for both options. Incremental dynamic analyses (IDA) were carried out using two suites of ground motions—the first set comprised site-dependent ground motions, while the second set was a compilation of hazard-consistent motions using the conditional scenario spectra approach. Findings from the study highlight the influence of modeling decisions and ground motion selection in the development of seismic collapse fragility functions and the characterization of risk for various demand levels.


2013 ◽  
Vol 353-356 ◽  
pp. 2301-2304
Author(s):  
Fan Wu ◽  
Ming Wang ◽  
Xin Yuan Yang

High-rise buildings, as a result of rapid urbanization in China, become one of popular structure kind. However, there have been few seismic vulnerability studies on high-rise buildings, and few fragility curves have been developed for the buildings. Based on the published data of more than 50 high rises and super high rises, the structural information such as building heights, mode periods, locations and sites, the maximum design story drift ratios, are collected and analyzed. The vulnerability analysis for high rises uses response spectrum displacement as seismic ground motion input, since the structures have comparatively long natural period. Using statistics and regression analysis, the relationship between the maximum story drift ratio and response spectrum displacement is established. Based on height groups and earthquake design codes, the fragility curves of different performance levels can be developed. These curves can provide good loss estimation of high rise structural damage under earthquake ground motion.


2011 ◽  
Vol 243-249 ◽  
pp. 3988-3991 ◽  
Author(s):  
Pei Ju Chang ◽  
Jian Zhu

This study focus on derivation of such fragility curves using classic mid-story isolation and reduction structures (MIRS) in China metropolis. A set of stochastic earthquake waves compatible with the response spectrum of China seismic code selected to represent the variability in ground motion. Dynamic inelastic time history analysis was used to analyze the random sample of structures. The result reveal that good effect for superstructure and reduction effect for substructure of MIRS is favorable and obvious under major earthquake, Weak position of MIRS was be pointed out and fragility curves of typical MIRS of China was obtained finally.


2015 ◽  
Vol 45 (4) ◽  
pp. 653-672 ◽  
Author(s):  
Nasser A. Marafi ◽  
Jeffrey W. Berman ◽  
Marc O. Eberhard

2018 ◽  
Vol 30 (1) ◽  
Author(s):  
Md. AbulHasan ◽  
Md. Abdur Rahman Bhuiyan

Chittagong Medical College Hospital (CMCH) is one of the most important government hospitals in Bangladesh. It is located in the heart of Chittagong city, the only port city of Bangladesh. Bangladesh National Building Code (BNBC) is the only official document, which has been used since 1993 as guidelines for seismic design of buildings. As per the guidelines of BNBC, the CMCH building was designed for an earthquake ground motion having a return period of 200 years. However, the revised version of BNBC has suggested that the building structures shall be designed for an earthquake ground motion having a return period of 2475 years. It is mentioned that a single seismic performance objective, the life safety, of the building is considered in both versions of BNBC. Considering the significant importance of CMCH building in providing the emergency facilities during and after the earthquake, it is indispensable to evaluate its seismic vulnerability for the two types of earthquake ground motion records having return period of 200 (Type-I) and 2475 (Type-II) years. In this regard, this paper deals with the seismic vulnerability assessment of the existing ancillary building (AB) of CMCH. The seismic vulnerability of building is usually expressed in the form of fragility curves, which display the conditional probability that the structural demand (structural response) caused by various levels of ground shaking exceeds the structural capacity defined by a damage state. The analytical method based on elastic response spectrum analyses results is used in evaluating the seismic fragility curves of the building. To the end, 3-D finite element model of the building subjected to 18 ground motion records having PGA of 0.325g to 0.785g has been used in theresponse spectrum analysis in order to evaluate its inter-story-drift ratio (IDR), an engineeringdemand parameter (EDP) for developing fragility curves. The analytical results have shown thatstructural deficiencies exist in the existing ancillary building (AB) for the Type-II earthquakeground motion record, which requires the building to be retrofitted to ensure that the existingancillary building (AB) becomes functional during and after the Type-II earthquake groundmotion record.


Sign in / Sign up

Export Citation Format

Share Document