Inelastic Displacement Ratios for SDOF Structures Subjected to Earthquake-tsunami Loadings

Author(s):  
Duofa Ji ◽  
Weiping Wen ◽  
Changhai Zhai ◽  
Dechun Lu
Buildings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 118
Author(s):  
Gabriele Guerrini ◽  
Stylianos Kallioras ◽  
Stefano Bracchi ◽  
Francesco Graziotti ◽  
Andrea Penna

This paper discusses different formulations for calculating earthquake-induced displacement demands to be associated with nonlinear static analysis procedures for the assessment of masonry structures. Focus is placed on systems with fundamental periods between 0.1 and 0.5 s, for which the inelastic displacement amplification is usually more pronounced. The accuracy of the predictive equations is assessed based on the results from nonlinear time-history analyses, carried out on single-degree-of-freedom oscillators with hysteretic force–displacement relationships representative of masonry structures. First, the study demonstrates some limitations of two established approaches based on the equivalent linearization concept: the capacity spectrum method of the Dutch guidelines NPR 9998-18, and its version outlined in FEMA 440, both of which overpredict maximum displacements. Two codified formulations relying on inelastic displacement spectra are also evaluated, namely the N2 method of Eurocode 8 and the displacement coefficient method of ASCE 41-17: the former proves to be significantly unconservative, while the latter is affected by excessive dispersion. A non-iterative procedure, using an equivalent linear system with calibrated optimal stiffness and equivalent viscous damping, is then proposed to overcome some of the problems identified earlier. A recently developed modified N2 formulation is shown to improve accuracy while limiting the dispersion of the predictions.


Author(s):  
M. A. Bravo-Haro ◽  
J. R. Virreira ◽  
A. Y. Elghazouli

AbstractThis paper describes a detailed numerical investigation into the inelastic displacement ratios of non-structural components mounted within multi-storey steel framed buildings and subjected to ground motions with forward-directivity features which are typical of near-fault events. The study is carried out using detailed multi-degree-of-freedom models of 54 primary steel buildings with different structural characteristics. In conjunction with this, 80 secondary non-structural elements are modelled as single-degree-of-freedom systems and placed at every floor within the primary framed structures, then subsequently analysed through extensive dynamic analysis. The influence of ground motions with forward-directivity effects on the mean response of the inelastic displacement ratios of non-structural components are compared to the results obtained from a reference set of strong-ground motion records representing far-field events. It is shown that the mean demand under near-fault records can be over twice as large as that due to far-fault counterparts, particularly for non-structural components with periods of vibration lower than the fundamental period of the primary building. Based on the results, a prediction model for estimating the inelastic displacement ratios of non-structural components is calibrated for far-field records and near-fault records with directivity features. The model is valid for a wide range of secondary non-structural periods and primary building fundamental periods, as well as for various levels of inelasticity induced within the secondary non-structural elements.


2018 ◽  
Vol 34 (3) ◽  
pp. 1177-1199 ◽  
Author(s):  
Pablo Heresi ◽  
Héctor Dávalos ◽  
Eduardo Miranda

This paper presents a ground motion prediction model (GMPM) for estimating medians and standard deviations of the random horizontal component of the peak inelastic displacement of 5% damped single-degree-of-freedom (SDOF) systems, with bilinear hysteretic behavior and 3% postelastic stiffness ratio, directly as a function of the earthquake magnitude and the distance to the source. The equations were developed using a mixed effects model, with 1,662 recorded ground motions from 63 seismic events. In the proposed model, the median is computed as a function of the vibration period and the normalized strength of the system, as well as the event magnitude and the Joyner-Boore distance to the source. The standard deviation of the model is computed as a function of the vibration period and the normalized strength of the system. The proposed model has the advantage of not requiring an auxiliary elastic GMPM to predict the median and dispersion of peak inelastic displacement.


In multistoreyed RCC framed buildings, critical damages are due to seismic ground excitations, which cause catastrophic failuresat the weaker locations. Buildings with two types of structural irregularities namely diaphragm discontinuity and open ground story are considered. Assessment of seismic vulnerability of these buildings is done by using Nonlinear Static Pushover Analysis (NSPA). Performance Based Seismic Design of masonry infilled RCC buildings with two different shape of openings in the diaphragm is considered here with Design Basis Earthquake(DBE) and Maximum Considered Earthquake(MCE) where by selecting appropriate performance criteria in terms of Inter-story drift ratio(IDR) and Inelastic displacement demand ratio(IDDR) are critically observed. The Equivalent Linearization Procedure of Pushover analysis presented in FEMA 440, which is a modification of Capacity Spectrum Method based on ATC-40 guidelines, is performed in ETABS-2016 to study the performance of R.C.C. buildings with diaphragm discontinuity, designed as per IS-1893-2016.


2019 ◽  
Vol 35 (3) ◽  
pp. 1109-1140 ◽  
Author(s):  
Yi-feng Wu ◽  
Hao Wang ◽  
Jian Li ◽  
Ben Sha ◽  
Ai-qun Li

A variety of research has focused on the inelastic displacement demand of a single degree of freedom (SDOF) system when subjected to near-fault pulse-like ground motions, in which the concerned ductility, μ, is typically lower than ten for normal structures. However, for seismic isolated structures that are more prone to large displacement, the corresponding research is limited. The purpose of this paper is to investigate the inelastic displacement spectra of an SDOF system with μ ranging from 5 to 70 and further proposes a direct displacement-based (DDB) design method for seismic isolated bridges. More concretely, a pool of near-fault pulse-like records is assembled, the mean C μ as a function of T/ T p is developed, and the influences of the ductility, μ, and the post-to-pre-yield ratio, α, on C μ are carefully investigated. Then the corresponding inelastic displacement spectra, S d, are obtained, and a comprehensive piecewise expression is proposed to fit S d. After that, the utilization of the spectra for the DDB design of a three-span seismic isolated continuous bridge is performed, and the principal of simplifying the bridge to an SDOF system is carefully explained and verified.


Sign in / Sign up

Export Citation Format

Share Document