Low-intensity exercise diverts cardiac fatty acid metabolism from triacylglycerol synthesis to beta oxidation in fructose-fed rats

Author(s):  
Milan Kostić ◽  
Goran Korićanac ◽  
Snežana Tepavčević ◽  
Jelena Stanišić ◽  
Snježana Romić ◽  
...  
2005 ◽  
Vol 289 (1) ◽  
pp. E2-E7 ◽  
Author(s):  
N. Hiscock ◽  
C. P. Fischer ◽  
M. Sacchetti ◽  
G. van Hall ◽  
M. A. Febbraio ◽  
...  

The present study examined the role of the cytokine IL-6 in the regulation of fatty acid metabolism during exercise in humans. Six well-trained males completed three trials of 120 min of cycle ergometry at 70% peak O2 consumption (V̇o2 peak; MOD) and 40% V̇o2 peak with (LOW + IL-6) and without (LOW) infusion of recombinant human (rh)IL-6. The dose of rhIL-6 during LOW + IL-6 elicited IL-6 concentration similar to those during MOD but without altering the circulating hormonal milieu seen in MOD. Palmitate rate of appearance (Ra), rate of disappearance (Rd), and oxidation were measured by means of a constant infusion of [U-13C]palmitate (0.015 μmol·kg−1·min−1, prime NaHCO3, 1 μmol/kg). Palmitate Ra, Rd, and oxidation were not affected by rhIL-6 infusion, remaining similar to LOW at all times. Palmitate Ra and oxidation were significantly greater in the MOD trial ( P < 0.05) compared with the LOW + IL-6 and LOW trials. Our data show that a low dose of rhIL-6, administered during low-intensity exercise without altering the hormonal milieu, does not alter fatty acid metabolism. These data suggest that the increase in fatty acid utilization seen during exercise at moderate compared with low intensity is not mediated via alterations in plasma IL-6.


Endocrinology ◽  
2004 ◽  
Vol 145 (12) ◽  
pp. 5493-5503 ◽  
Author(s):  
Diane C. Lagace ◽  
Roger S. McLeod ◽  
Mark W. Nachtigal

Abstract Treatment of epilepsy or bipolar disorder with valproic acid (VPA) induces weight gain and increased serum levels for the satiety hormone, leptin, through an unidentified mechanism. In this study we tested the effects of VPA, a short-chain branched fatty acid (C8:0), on leptin biology and fatty acid metabolism in 3T3-L1 adipocytes. VPA significantly reduced leptin secretion in a dose-dependent manner. Because fatty acid accumulation has been hypothesized to block leptin secretion, we tested the effect of VPA on fatty acid metabolism. Using 14C-radiolabeled VPA, we found that the 14C was mainly incorporated into triacylglycerol. VPA did not alter lipogenesis from acetate, nor did it change the amount of intracellular free fatty acids available for triacylglycerol synthesis. Decreased leptin secretion was accompanied by a reduction in leptin mRNA, even though VPA treatment did not alter the protein levels for known transcription factors affecting leptin transcription including: CCAAT/enhancer binding protein-α, peroxisome proliferator-activated receptor-γ, or steroid regulatory element binding protein 1a. VPA altered levels of leptin mRNA independent of de novo protein synthesis without affecting leptin mRNA degradation. This report demonstrates that VPA decreases leptin secretion and mRNA levels in adipocytes in vitro, suggesting that VPA therapy may be associated with altered leptin homeostasis contributing to weight gain in vivo.


1988 ◽  
Vol 253 (1) ◽  
pp. 161-167 ◽  
Author(s):  
P Gerondaes ◽  
K G M M Alberti ◽  
L Agius

The direct effects of clofibrate analogues on carnitine acyltransferase activities and fatty acid metabolism were studied in cultured hepatocytes. Rat hepatocytes cultured with bezafibrate or ciprofibrate (0.1-10 micrograms/ml) for 48 h had increased activities of carnitine acetyltransferase (CAT; 4-6-fold) and carnitine palmitoyltransferase (CPT; 12-34%). The increase in CAT was higher in hepatocytes from the periportal zone (440%) of rat liver compared with cells from the perivenous zone (266%). In human hepatocytes, in contrast with rat, the fibrates did not cause a marked increase in CAT activity. The effects of fibrates on palmitate metabolism were dependent on the carnitine status. In the presence of exogenous carnitine (1 mM), rat hepatocytes cultured with bezafibrate had higher rates of total palmitate metabolism (29-34%) without increased partitioning of palmitate towards beta-oxidation, relative to control cultures. At low endogenous carnitine concentrations, cells cultured with bezafibrate had a greater increase in palmitate metabolism, esterification and cellular accumulation of triacylglycerol compared with the corresponding increases in the presence of carnitine. The changes in palmitate metabolism at either high or low carnitine concentrations were small in comparison with the changes in CAT activity. It is concluded that the increase in hepatic carnitine that occurs in vivo after fibrate feeding probably plays the major role in the changes in partitioning of fatty acid between beta-oxidation and esterification.


1984 ◽  
Vol 217 (2) ◽  
pp. 461-469 ◽  
Author(s):  
A D Pollard ◽  
D N Brindley

The effects of vasopressin on the short-term control of fatty acid metabolism were studied in isolated rat hepatocytes. Vasopressin increased the oxidation of oleate to CO2 and decreased the formation of ketones in hepatocytes from Wistar rats, but not from Brattleboro rats. Incubation with vasopressin for 30 min increased the conversion of oleate into triacylglycerol by 17% and 32% in hepatocytes from Wistar and Brattleboro rats respectively. The corresponding increases for the phospholipid fraction were 19% and 42%. When Wistar-rat hepatocytes were incubated with corticosterone for 6 h there was a 19% increase in triacylglycerol synthesis, and a 52% increase if vasopressin was added 30 min before the end of the incubation. Glycerol phosphate acyltransferase activity was not significantly increased by vasopressin. Incubation for 5-60 min with vasopressin increased the Vmax. of phosphatidate phosphohydrolase by 48% and 32% respectively in hepatocytes from Wistar and Brattleboro rats. These increases were antagonized if EGTA was added to the medium used for incubating the hepatocytes. The replacement of vasopressin by 5 microM-ionophore A23187 produced a significant increase of 13% in the phosphohydrolase activity. It is therefore likely that the effects of vasopressin on the phosphohydrolase are mediated by Ca2+. These results are discussed in relation to the possible function of phosphatidate phosphohydrolase in controlling the turnover of phosphoinositides, the synthesis of phosphatidylethanolamine, phosphatidylcholine and triacylglycerol, and the secretion of very-low-density lipoproteins.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1453-1453
Author(s):  
Enric Redondo Monte ◽  
Anja Wilding ◽  
Georg Leubolt ◽  
Paul Kerbs ◽  
Johannes Bagnoli ◽  
...  

ZBTB7A is a transcription factor with function in hematopoietic lineage fate decisions (reviewed in Lunardi et al., 2013, Blood). Moreover, ZBTB7A has been shown to also be involved in regulation of glycolysis in solid tumors (Liu et al., 2014, Genes Dev.). Recently, we found ZBTB7A frequently mutated in acute myeloid leukemia (AML) with t(8;21) translocation. What is more, high expression of ZBTB7A correlated with better clinical outcome in cytogenetically normal AML (Hartmann et al., 2016, Nat Commun). The functional role of ZBTB7A and its alterations in myeloid malignancies, however, remains unclear, especially concerning the regulation of leukemia metabolism. To investigate the effect of ZBTB7A mutations in leukemia, we generated K562 ZBTB7A knockout (KO) cells using CRISPR/Cas9, followed by RNA-Seq in KO and control cells. Thereby, we confirmed de-repression of the previously reported ZBTB7A target gene SLC2A3 (glucose transporter 3) as well as upregulation of several other glycolysis related genes (PGM2, PGM3, SLC2A1 and ENO2). ZBTB7A binding to all of these candidate target genes was validated using publicly available ChIP-Seq data from K562 cells (ENCSR000BME). Interestingly, Gene Set Enrichment Analysis revealed deregulation of distinct pathways related to fatty acid metabolism in this model (Figure 1A). KO cells overexpress genes involved in the fatty acid beta oxidation pathway (ACAA2, ACOX1, ACSL1, ACADVL, CPT1A and CPT1B) as well as genes related to other fatty acid metabolism (EPHX2, FADS2 and others) (Figure 1B). We could further validate ACAA2, ACOX1, ACADVL and CPT1A as direct ZBTB7A targets using ChIP-Seq data. Of special interest are CPT1A and CPT1B, which are targetable through Etomoxir treatment. KO cells showed an increased sensitivity to this drug compared to control (IC50= 120.6 and 125.5 µM in KOs vs 228.4 µM in control, p&lt;0.0001). Moreover, analysis of RNA-Seq data from patients with AML t(8;21) revealed a significantly higher expression of EPHX2 (p=0.049), FADS2 (p=0.003) and FASD1 (p=0.021) in patients harboring ZBTB7A mutations (Figure 1C) using a two-tailed unpaired Student's t-test. In order to evaluate our findings on a functional level, we performed metabolic flux assays in K562 ZBTB7A KO vs control cells. Using Seahorse technology (Agilent), we found that KO cells show a modest increase in extracellular acidification rate (ECAR), indicating a higher glycolysis. This effect becomes more obvious after mitochondrial respiratory chain inhibition: 41.20 and 51.66 mpH/min in KO clones vs 34.33 mpH/min in control (p=0.002 and p&lt;0.001, respectively) (Figure 1D). This result suggests that loss of ZBTB7A may confer an advantage to cells in specific microenvironment with low oxygen availability, such as the bone marrow. Moreover, metabolic flux assays also revealed a nearly 50% increase in oxygen consumption rate (OCR) in KO cells after 1h glucose starvation: 140.53 and 148.53 pmol/min in KO clones vs 96.46 pmol/min in control (p&lt;0.001 in both comparisons) (Figure 1E). Since the cells were deprived from glucose, the observed oxygen consumption may arise mainly from glutamate metabolism or fatty acid oxidation. Deprivation from glutamate reduced overall OCR but KO cells still showed increased oxygen consumption compared to control. These results therefore suggest that an increased beta oxidation of fatty acids leads to the higher OCR observed in KO cells. In summary, we have demonstrated that the previously described role of ZBTB7A as a regulator of glycolysis in solid tumors is also relevant in myeloid malignancies. In addition, we identified the beta oxidative pathway and fatty acid synthesis as novel mechanisms underlying the perturbed function of ZBTB7A in tumor metabolism. ZBTB7A downregulation or mutation may lead to an increased energy production providing an advantage to leukemia cells. These findings likely have therapeutic implications, as metabolic inhibitors such as 2-deoxy-d-glucose and Etomoxir may specifically target ZBTB7A deficient malignancies. Figure Disclosures Hiddemann: Celgene: Consultancy, Honoraria; Roche: Consultancy, Honoraria, Research Funding; Janssen: Consultancy, Honoraria, Research Funding; Gilead: Consultancy, Honoraria; Bayer: Research Funding; Vector Therapeutics: Consultancy, Honoraria.


1983 ◽  
Vol 214 (2) ◽  
pp. 553-560 ◽  
Author(s):  
M A Lomax ◽  
I A Donaldson ◽  
C I Pogson

Isolated liver cells prepared from starved sheep converted palmitate into ketone bodies at twice the rate seen with cells from fed animals. Carnitine stimulated palmitate oxidation only in liver cells from fed sheep, and completely abolished the difference between fed and starved animals in palmitate oxidation. The rates of palmitate oxidation to CO2 and of octanoate oxidation to ketone bodies and CO2 were not affected by starvation or carnitine. Neither starvation nor carnitine altered the ratio of 3-hydroxybutyrate to acetoacetate or the rate of esterification of [1-14C]palmitate. Propionate, lactate, pyruvate and fructose inhibited ketogenesis from palmitate in cells from fed sheep. Starvation or the addition of carnitine decreased the antiketogenic effectiveness of gluconeogenic precursors. Propionate was the most potent inhibitor of ketogenesis, 0.8 mM producing 50% inhibition. Propionate, lactate, fructose and glycerol increased palmitate esterification under all conditions examined. Lactate, pyruvate and fructose stimulated oxidation of palmitate and octanoate to CO2. Starvation and the addition of gluconeogenic precursors stimulated apparent palmitate utilization by cells. Propionate, lactate and pyruvate decreased cellular long-chain acylcarnitine concentrations. Propionate decreased cell contents of CoA and acyl-CoA. It is suggested that propionate may control hepatic ketogenesis by acting at some point in the beta-oxidation sequence. The results are discussed in relation to the differences in the regulation of hepatic fatty acid metabolism between sheep and rats.


1990 ◽  
Vol 29 (01) ◽  
pp. 28-34 ◽  
Author(s):  
F. C. Visser ◽  
M. J. van Eenige ◽  
G. Westera ◽  
J. P. Roos ◽  
C. M. B. Duwel

Changes in myocardial metabolism can be detected externally by registration of time-activity curves after administration of radioiodinated fatty acids. In this scintigraphic study the influence of lactate on fatty acid metabolism was investigated in the normal human myocardium, traced with 123l-17-iodoheptadecanoic acid (123l-17-HDA). In patients (paired, n = 7) lactate loading decreased the uptake of 123l-17-HDA significantly from 27 (control: 22-36) to 20 counts/min/pixel (16-31; p <0.05 Wilcoxon). The half-time value increased to more than 60 rriin (n = 5), oxidation decreased from 61 to 42%. Coronary vasodilatation, a well-known side effect of lactate loading, was studied separately in a dipyridamole study (paired, n = 6). Coronary vasodilatation did not influence the parameters of the time-activity curve. These results suggest that changes in plasma lactate level as occurring, among other effects, during exercise will influence the parameters of dynamic 123l-17-HDA scintigraphy of the heart.


Sign in / Sign up

Export Citation Format

Share Document